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Abstract

KRIMP is an algorithm based on information theory capable of capturing arbitrary length
co-occurrence relations between itemsets in a database. KRIMP code tables have shown to

be useful models of databases for multiple Machine Learning tasks including classification and
clustering. Cross-compression sizes obtained from KRIMP code tables are a generalization of
cross-entropy capable of taking into account such co-occurrence relations. This work focuses
on the application of KRIMP cross-compression in two different but overlapping areas. First,
an unsupervised anomalous database detection algorithm is presented, capable of taking into
account database structure. The algorithm is tested on itemset databases with a significant
amount of structure to characterize its behavior and an experiment is performed on text
data. Second, the application of KRIMP to natural language is investigated further, in the
context of authorship attribution. The KRIMP classifier is a generalization of the Naive Bayes
classifier capable of combining frequently co-occurring words or items into itemsets, delivering
an appealing comparison between the two algorithms. Different ways of transforming text
into itemset form were explored, as well as two different ways of applying Laplace smoothing.
Experiments indicated that co-occurrence relations are important for attribution, with KRIMP
being more robust and in most cases more accurate on prose text when the complete alphabet
is considered and itemsets are created per sentence. The behavior suggests that there is relevant
syntactic structure at the sentence level involving punctuation and function words that is
captured in KRIMP code tables, and is characteristic of individual authors. The decrease in
performance when splitting sentences at punctuation characters and considering only function
words is an indication that language grammar is too restrictive at that level, causing stylistic
choices to be obscured rather than exposed.
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1
Introduction

An important problem in machine learning is how to capture, in a model, the most important
dependency relations between variables or their values. It is an important problem because

most real databases exhibit such relations, and in many cases accounting for them leads to
increased performance of Machine Learning algorithms, with respect to simplifying assumptions.
It is an interesting problem, as solutions are not straightforward: attempting to take into account
all possible partitionings of a set results in intractable algorithms. In fact, as this problem
appears whenever modeling multivariate data, an immense number of solutions have been
presented in data mining and machine learning literature. In some cases, it is acceptable to
completely ignore dependency relations of order greater than one, or up to a specific order.
More challenging is the problem of capturing the most important relations regardless of the
number of variables involved.

A similar but not equivalent problem appears in the itemset database domain, where it is
desired to capture a model of a database that incorporates the most important relations between
itemsets, or values of variables. KRIMP is an algorithm with grounds on information theory
that addresses this problem by capturing a reduced set of important co-ocurrence relations
between items. A KRIMP model is interpretable, and naturally defines quantities that share
analogies with entropy, cross-entropy and the Kullback-Leibler divergence, very well-known
quantities applicable specially to single-variate distributions.

One kind of readily available data with a degree of structure is natural language. The
main focus of this work is the application of these KRIMP-induced quantities to written text,
first with an anomaly detection algorithm capable of differentiating databases based on their
structure, and second, in the authorship attribution of literature.

The rest of this document is structured as follows:

1



CHAPTER 1. INTRODUCTION

• Chapter 2 is a brief explanation of the KRIMP algorithm, a compression algorithm
for itemset databases with a theoretical basis on information theory, specifically on the
Minimum Description Length principle. The induced dissimilarity measure for databases
analyzed and used in chapters 3 and 4 is presented, as well as some applications of the
KRIMP algorithm, including classification. References to the relevant papers are given for
each of these applications.

• Chapter 3 presents a KRIMP-based algorithm to perform detection of anomalous databases.
The algorithm performs unsupervised detection of anomalies on a set of databases, based
on several assumptions, an important one being that most of the databases have a structure
that can be considered normal. The rationale for the use of KRIMP cross-compression
sizes is presented, as well as a characterization of the algorithm’s behavior on synthetic
and real data.

• Chapter 4 studies the use of KRIMP to capture structure present in natural language, in
particular for authorship attribution: finding the most likely author of a disputed text.
It presents the results of the first application of KRIMP to literature, in attribution
of both Victorian novels and Dutch poems. The algorithm is compared with Naive
Bayes classification due to its similar theoretical grounds, which facilitate interpretation.
Conclusions are drawn regarding the applicability of KRIMP on text data.

2
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2
Preliminaries

This chapter introduces the KRIMP algorithm and the different dissimilarity measures
for itemset databases that can be defined based on it. These constitute the basis of the

algorithms proposed, and the experiments performed in subsequent chapters.

2.1 Definitions

Some definitions used in itemset databases and pattern set mining will now be introduced. The
task of finding frequent itemsets (a special case of theory mining), of a database D has been
defined in [41] as: given an alphabet I and a database D over I (that is, the transactions in
D are subsets of I), and a pattern language L which consists of all subsets of I, find all the
elements of L that meet a minimum support:

{X ∈ L|suppD(X) ≥ minsup}

where the support of an itemset X is the number of transactions of D containing X:

|{X ∈ D|X ⊆ t}|

2.2 Kolmogorov Complexity

The Kolmogorov complexity of a string x is defined as the length of the shortest computer
program that can produce x as output, and is denoted as K(x). Program lengths are of course
dependent on the programming language that is used to code the program. However, it can be

3



CHAPTER 2. PRELIMINARIES

proven that differences are up to a fixed additive constant [39]. Hence K(x) is the minimum
amount of information necessary to generate x.

Conditional Kolmogorov complexity, denoted as K(x|y) for strings x and y is the length of
the shortest program that generates x as output, while receiving y as input.

Kolmogorov complexity has been shown to be uncomputable. A corollary is that compression
lengths attained by running universal compression algorithms on x are upper bounds to K(x)

[18].

2.3 The Minimum Description Length Principle

The Minimum Description Length (MDL) principle, states that given a set of models H capable
of encoding a dataset D, the best model H ∈ H is the one that minimizes:

L(H) + L(D|H)

where:

• L(H) is the length in bits of the description of H.

• L(D|H) is the length of the description of the data when encoded using H.

MDL aims to obtain an approximation to the Kolgomorov complexity of the data: the length
of the shortest program which produces D as output [8]. MDL adjusts to the definition in
the sense that the same program can be used to generate any database given its compressed
representation and its code table, ie. its length is a fixed constant. In doing so, the formulation
seeks a balance between the complexity of the model and the length of the data, a natural
safeguard against the problem of over-fitting. This allows MDL-based models to possibly be
parameter-free.

2.4 The KRIMP algorithm

The KRIMP algorithm is the product of applying the MDL principle to itemset databases. The
original formulation of MDL given above, known as crude MDL [8], was applied to itemset
databases by Vreeken et al. [41], with the objective of finding a set of interesting non-redundant
itemset that compresses the database well.

2.4.1 Basic KRIMP

The proposed approach operates on an itemset database D over an alphabet I. A hypothesis
H ∈ H is defined as a code table: a mapping of itemsets to codes. Concretely, a code table CT
is a two-column table where the first column contains an itemset X ∈ I and the second column

4



2.4. THE KRIMP ALGORITHM

contains a unique code from a codeword set C. In KRIMP, since data is not begin transmitted,
the specific code used is irrelevant. Only the length of the code in bits is considered. A KRIMP
code table contains at least the set of singleton itemsets.

A code table is used to cover the database transactions such that no items are left
uncovered and no overlaps are allowed. Formally, a cover function is a function cover :

CT × P(I)⇒ P(P(I)) such that:

• If X ∈ cover(CT, t) then X ∈ CT , that is, the cover function covers a transaction using
itemsets in CT .

• If X,Y ∈ cover(CT, t) then either X = Y or X ∩ Y = ∅ (itemsets covering t cannot
overlap).

•
⋃
X∈cover(CT,t)X = t (t is completely covered).

The code lengths, in general, will be chosen such that more common itemsets correspond to
shorter codes, since this leads to the best compression. The usage count of an itemset is the
number of times it is used to cover a transaction:

usageD(X) = |{X ∈ D|X ∈ cover(CT, t)}|

which implies a probability distribution given by:

P (X|D) =
usageD(X)∑

Y ∈CT usageD(Y )

The code lengths are chosen optimally in accordance to this probability distribution:

L(codeCT (X)) = |codeCT (X)| = − log(P (X|D))

The compressed size of an itemset, given a cover function cover and a code table CT is then
obtained by adding the code lengths of the itemsets X ∈ cover(CT, t):

L(t|CT ) =
∑

X∈cover(CT,t)

L(codeCT (X))

where, as said before, the covering function does not allow overlaps. The compressed size of
the database is the sum of the compressed sizes of its itemsets:

L(D|CT ) =
∑
t∈D

L(t|CT )

In accordance to crude MDL, the best code table is the one that minimizes the sum of the
lengths of data and model:

5



CHAPTER 2. PRELIMINARIES

L(D, CT ) = L(D|CT ) + L(CT |D)

The length of a code table L(CT |D) must then be defined. This is pointed out as being a
source of ambiguity in the crude MDL approach. In KRIMP, this length is defined with respect
to D itself. Specifically, the length of the first column (description of X ∈ CT ) is the length of
the items in X encoded using a code table containing only the singleton itemsets, known as the
Standard Code Table, which simply associates items with a code length proportional to the
inverse of their support. The second column of CT contains codes, or code lengths, and then its
encoded length is known. This results in the expression:

L(CT |D) =
∑

X∈CT :usageD(X) 6=0

L(codeST (X)) + L(codeCT (X))

KRIMP makes use of a set of candidate itemsets F , which may be used in the code table,
and are obtained using, for example, frequent set mining algorithms like Apriori.

The Minimal Coding Set Problem that KRIMP solves [41] is then defined as: given a database
D over I, and a candidate set F of itemsets, find the coding set CS ∈ F with no unused
non-singleton itemsets such that for the corresponding code table CT the total compressed size
L(D, CT ) is minimal.

The KRIMP algorithm is a heuristic that provides an approximate solution to this problem,
and works as follows:

1. Start with the standard code table containing only single items.

2. Add candidate itemsets from F to the code table, one by one. Keep the ones that lead to
a better compression of the database. Otherwise discard the set.

3. Repeat until all candidates have been considered.

Two parts of the algorithm remain to be defined: the ordering of the candidate itemsets F
and the covering function. For the ordering of F , KRIMP considers itemsets first in order of
frequency, then in order of length, and then lexicographically. As covering function KRIMP
defines a heuristic to cover a transaction t: traverse the code table CT in a fixed order, and
include an itemset in the cover of t if it is contained in t. Then remove the covered itemsets
and proceed until t is covered. Since CT contains the singleton itemsets initially, t will be fully
covered. This means that the ordering of the code table and the order of the candidates is
relevant. KRIMP choses to order the code table itemsets first by decreasing cardinality, then by
decreasing support, and then lexicographically. The candidates are considered such that itemsets
with probably shorter codes have preference: first by decreasing support, then by cardinality,
and finally lexicographically. Then, as the algorithm progresses shorter itemsets are replaced by
longer itemsets in the code table. This leaves itemsets in the code table which may have very

6



2.4. THE KRIMP ALGORITHM

low or even zero usage counts. This itemsets may harm the compression, and are then removed
by applying post-acceptance pruning: once a candidate is accepted, the algorithm considers for
removal all code table itemsets whose usage count has been reduced by the new element. If
removing the itemset leads to better compression, it is permanently eliminated from the code
table.

2.4.2 Complexity

The worst case time complexity of KRIMP is shown in [41] to be:

O(|F| log |F|+ |F|2 × (|D| × |F| × |I| × |F|))

However, considering that the code tables obtained by KRIMP are in practice very small, a
more accurate complexity is:

O(|F| log |F|+ |D| × |F| × |I|)

The |I| term is also very loose, since itemsets are normally much shorter than |I|.

2.4.3 KRIMP code tables

The models obtained by the KRIMP algorithm (code tables) have important advantages in
quantifying information thanks to the foundation on information theory of the algorithm. The
compression size resulting from KRIMP is a quantity in bits that approximates the Kolmogorov
complexity of the data.

An important property of the algorithm is that running the KRIMP algorithm with an
empty candidate set F results in a compression size for the database (excluding the code table
size) equal to the entropy of the data. This is because the code table will compress the database
using only alphabet elements–itemset division becomes irrelevant. Code lengths are assigned
using optimal coding, just like in an entropy calculation.

When frequent candidate itemsets are added, the database will be compressed to a size
L(D|CT ) normally lower than the entropy of D, thanks to its ability to combine alphabet items
into itemsets. These two compressed sizes are comparable as both are bit quantities. The ratio
between the two gives important information about how compressible a database is. The lower
the ratio, the greater the information content being compressed. The ratio between compressed
size by KRIMP and entropy will be termed CRH to differentiate from the compression ratio
used in the KRIMP papers Vreeken et al. [41] explained next.

CRH(D) =
L(D|CT )

H(D)

7
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Although this is an attractive measure due to its relation with entropy, the compression
ratio used in the KRIMP paper Vreeken et al. [41] takes into account the size of code table,
true to the MDL theory behind KRIMP. This alternative compression ratio is defined as:

CR(D) =
CT (D, CT )

CTSTD(D, CT )

where CT (D, CT ) is the total compressed size of database and code table. In practice, for
large databases and relatively small alphabets both compression ratios are expected to be
similar.

2.5 A dissimilarity measure for databases

The Minimum Coding Set problem, and KRIMP as an approximate solution, naturally define a
dissimilarity measure for databases [40]. The central idea is that an optimal code table CTX
for database DX is able to compress DX better than any other code table CTY learned from a
different database DY . In general, the more different DX and DY the greater the value of:

(2.1) DMDL(DX ,DY ) = CTY (DX)− CTX(DX)

Note that this measure is not symmetric, meaning DMDL(X,Y ) 6= DMDL(Y,X) in general.
The MDL dissimilarity as formulated above is expect to be non-negative, however, it is not
provably so since the code tables are obtained by minimizing the combined length of compressed
database and code table.

It is however simple to formulate a version of the dissimilarity measure that is provably
non-negative:

DMDL,NN (DX ,DY ) = CTY (DX) + LX(CTY )− CTX(DX)− LX(CTX)

where LX(CTY ) is the length of the code table learned from DY but calculated with
respect to the standard code table of X. The proof follows by contradiction from the fact that
CTX(DX) + LX(CTX) is minimal for DX . If CTY (DX) + LX(CTY ) < CTX(DX) + LX(CTX)

then code table CTY is a better choice and CTX would not be optimal. This is assuming that
the candidates sets used are the same (eg. all possible subsets of I (ie. F = P(I)). This is
normally not the case in practice. However, the analysis is being made for ideal MDL, for which
KRIMP is only a heuristic.

None of the measures satisfy the identity property DMDL(DX ,DY ) = 0⇔ DX = DY , which
is a property both of distance measures and divergences like the KL-divergence. Although any
code table over the same coding set for DX is worse than CTX , it is the case that multiple
databases might generate the same code table, meaning that DMDL(DX ,DY ) = 0 does not
imply DX = DY . However, it can be argued that the set of databases equivalent to DX :

8



2.6. KRIMP IN PRACTICE

{D|CTD = CTX}

is restricted to databases in a neighborhood of DX , specifically databases which have the
same P (X|(D)) distribution when compressed, databases which can be covered optimally using
exactly the same itemsets and the same number of them.

Hence, the ideal MDL dissimilarity operates very much like a divergence for multi-variate
distributions (restricted to the discrete distributions that can be represented by a database),
which takes into account the most important dependencies between itemsets. In fact, it can be
seen that the empirical Kullback-Leibler divergence is a special case for the first formulation
of the MDL dissimilarity (ignoring code table length), for databases of single items. The
measure must be normalized by dividing by the length of D1 to exactly match the empirical
KL-divergence.

A dissimilarity measure for databases which combines the two ways of the MDL dissimilarity
has been presented in [40] as:

DS(DX ,DY ) = max

{
CTY (DY )− CTX(DX)

CTX(DX)
,
CTX(DY )− CTY (DY )

CTY (DY )

}
This measure has the symmetry property and normalizes for the size of the database, which

may also be done by dividing by the length of the databases, to obtain an average difference in
the compressed size of a transaction, in bits.

2.6 KRIMP in practice

KRIMP compression and cross-compression have been used in a variety of Machine Learning
applications:

• In classification [37], where a compressor (code table) is learned for each class in the
training set, and a test instance t is classified to the class of the compressor which
compresses it best. The results show a performance at least as good as many classifiers,
despite KRIMP not being designed for classification.

• In clustering [38], where two approaches are followed. In the first one (model-driven), for
a given number of clusters k, the algorithm starts with k copies of the best code table of
the entire database. Next, each element in each code table is eliminated, and the database
compressed, using the k code tables, where each transaction is compressed using the code
table which compresses it best. The code tables are pruned in this way until no elimination
of an element leads to reducing the total compressed size. This induces a clustering by
assigning elements to the code table which compresses them best.

In data-driven clustering, the database is initially randomly partitioned, and a code table
obtained for each partition. Then iteratively, every database element is re-assigned to
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the partition whose code-table compresses it best. This is iterated until the assignment
converges, delivering a clustering of the data.

Both approaches are shown in [38] to be viable clustering approaches, able to separate
classes in itemset databases by using differences in structure.

• As a similarity measure for databases [40]. Databases were learned for the different classes
of a database. The results show that given the elements of a class from a test itemset
databases, code tables obtained from other classes are worse at compressing those elements
than its own class code table. It is also shown that the magnitude of the dissimilarity
measure has correspondence with the classification error between two classes, as shown on
a confusion matrix. Furthermore, it is shown that the resulting cross-compression code
tables and covers give a way to interpret the dissimilarity between two databases, unlike
other approaches based on compression which make use of general compressors.
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3
Anomalous Database Detection

3.1 Introduction

An important problem in data mining is that of identifying exceptional distributions, those
which deviate substantially from other known distributions over the same set, or a similar

set of variables. This can also be seen as the problem of identifying outlying distributions.
Consider, for example, the problem of identifying businesses that place anomalous orders to their
suppliers, from a set of businesses with similar customers. It is expected that businesses with
similar customers will place similar orders, and hence the problem can be formulated as that of
finding outliers among the distributions/databases representing their orders. In some settings
such anomalies might indicate, for example, that fraud is being committed in a systematic
way. In the natural language domain one might be interested in finding authors, editorials,
or news outlets that treat a topic in a way that is out of the ordinary, or possibly biased.
More simple applications simply seek to find mistakes in a corpus, documents that do not
belong for a reason that is unknown beforehand. In the networking setting, nodes with very
particular traffic characteristics over a long period of time can be identified based on databases
of recorded packets. These may signal fraudulent activity which requires further attention by
security software or the network administrator. In all these cases there is a notion of anomaly
that cannot be defined precisely, but refers to anything that do not fits the norm.

In this chapter, the problem of finding anomalous databases is addressed by making use of
the KRIMP algorithm. The objective is to device an algorithm that learns the most important
structure present in the data, and signals out databases that do not conform to this notion of
normality. The use of the KRIMP algorithm means that the algorithm is specially aimed at
databases with a significant amount of structure, and is able to detect differences in arbitrary-
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order co-occurrence relations between itemsets. Furthermore, KRIMP code tables ensure that
results are relatively easy to interpret and have a basis on information theory. The chapter
begins with a definition of the problem and a survey of related work, and proceeds to the
proposal and justification of an algorithm for the task. The algorithm is tested making use of
standard itemset databases and a more interpretable experiment is performed on text data.

3.2 The Problem

According to Chandola et al. [4], anomalies are "patterns in data that do not conform to a
well defined notion of normal behavior". In other words, defining anomalous behavior implies a
definition of normal behavior, and vice-versa. Since in most cases we only have a dataset at our
disposal and do not know hard truths about what constitutes an anomaly, the first assumption
that is normally made is also a straightforward one: most of the transactions in the dataset
constitute normal behavior, and the dataset exhibits structure. The user is then most probably
interested in subsets of the data which do not exhibit this structure. There are different ways
of capturing the structure present in the data. For example, the dataset or database may be
considered as a whole or clustered and anomalies defined with respect to those clusters.

The Anomalous Database Detection problem will be defined here as: given a set of n itemset
databases S = {D1,D2, ...,Dn}, find an anomaly score si for each database Di which captures
the likelihood of such database not being generated by the data-generating distribution that
generated most of the data in S.

By solving the previous problem we clearly also solve the problem of returning the k top
anomalous databases in S. Since the definition of what constitutes an anomaly is ultimately
subjective: data has a potentially infinite number of characteristics which could be used to
define anomalous behavior; it makes little sense to attempt to define the problem absolutely.
In this work, anomalous behavior is defined in terms of the dissimilarity measure induced by
a KRIMP code table [41]. The KRIMP algorithm can be used to, given a database D1 over
domain X , find a code table CT1 which encodes D1 in a nearly-optimal way (since KRIMP is a
heuristic) according to the Minimum Description Length principle. This code table can also be
used to encode any other database D2 over the same domain X, resulting in a compressed size
CT1(D2) which is analogous to a cross-entropy between probability distributions, but captures
dependencies between items. A measure analogous to a Kullback-Leibler divergence can be
defined by subtracting the optimal compressed size of database D2, which can be seen as a
measure of its entropy. This dissimilarity measure, assuming the code tables are optimal, shares
several properties with the KL-divergence, such as being non-negative, being zero only if the
databases are equal, and asymmetry. Both the cross-compression sizes and MDL dissimilarity
measure are analyzed theoretically as ways to define anomalous behavior based on KRIMP.
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3.3 Related work

This section is a review of the fields most closely related to the problem. To the best of our
knowledge the problem of finding anomalous itemset databases, as opposed to that of finding
anomalous data records or itemsets, has not been treated directly.

3.3.1 Subgroup discovery

In subgroup discovery every data point is identified by a set of variables and a target variable.
The goal of subgroup discovery is to find subgroups of the data that have a distribution for
the target variable that is very different from that of the complete data. [11]. These subgroups
must be identified by a rule, which takes the form of a conjunction of attribute-value pairs or
inequalities (for numerical variables), which describe the subset of the data with this potentially
interesting distribution of the target value. Normally we are interested in rules which have a
big enough support and are interesting according to some measure. Multiple measures and
approaches to the problem have been proposed.

Apriori-SD [15], for example, mines frequent itemsets using the Apriori algorithm, and then
discovers rules containing only the target variable on the right hand side. The rules are also
subject to meeting a given minimal support and confidence. Then the algorithm selects the
most interesting rules by a measure which favors rules with high support and which induce a
big change in the probability of the target variable’s value:

WRAcc(X ⇒ Y ) = P (X)(P (Y |X)− P (Y ))

The second multiplicand can be seen then as quantifying the interestingness of the distribution
of Y among the subgroup. Subgroup discovery can be seen as a search for distributions that are
interesting, but with respect to a single target variable.

Multiple models have been proposed for the subgroup discovery problem, most considering
categorical datasets, although some handling numerical variables (both target and left hand side)
as well. Most approaches can be divided into extensions of classification algorithms, extensions
of frequent rule mining algorithms (like Apriori-SD) and genetic algorithms employing fuzzy
rules to describe the subgroups. [11]

Exceptional Model Mining (EMM), a generalization of Subgroup Discovery is concerned
with finding not a subgroup with an exceptional distribution with respect to a single target
variable, but an exceptional multi-variate distribution, with respect to multiple categorical target
variables. This is achieved through training of a model on the complete data and candidate
subgroups and using a dissimilarity measure based on such model. The goal is to find subsets
of the data, identified by a rule, which are both big enough (it is easy to find exceptional
distributions from only a few samples) and whose model has maximum dissimilarity with the
model trained on the complete data.
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The use of Bayessian Networks as models has been presented, to capture the most important
dependencies between target variables. A dissimilarity measure for Bayessian Networks is used
to quantify the dissimilarity between the two models [6].

EMM is similar to the problem presented in that it must compare multi-variate models.
However, there are many important differences. In EMM, as in subgroup discovery, the focus is
on finding subgroups that can be described by rules, and which are as large as possible, and
anomalous with respect to a fixed set of variables. In Anomalous Database Detection we are
concerned with anomalies with respect to all the variables, and the databases are assumed to
be known (ie. the search space is the set of databases as opposed the set of possible subgroups
of the data described by a rule).

3.3.2 Data exploration

A similar problem has been treated in the context of data exploration in databases. In this
case the user is browsing through a database in search of subsets of the data with interesting
characteristics, but the user doesn’t know exactly what he is looking for. Datamaps [34] have
been proposed as a way to guide the user in the exploration. A simple datamap is a representation
of a partitioning of a subset of the data, which supports zooms, projections and rollbacks. It is
desirable for this partitioning to be represented by simple rules over the variables. To achieve
this the subset under consideration is first clustered, and then a decision tree is trained using
the clusters as labels (some information may be lost in the process). Datamaps allow users to
find outliers, which will manifest as small isolated clusters. The technique operates in a similar
way to some anomaly detection techniques, which assume that anomalies correspond to small
clusters.

Being a data exploration technique, datamaps are focused on exposing this to the explorer,
and not in ranking the interestingness of these clusters. A version of the technique for high
dimensional spaces first partitions the data vertically by finding sets of columns which are
mutually dependent, with respect to the variation of information:

V I(X,Y ) = H(X) +H(Y )− 2I(X,Y )

A low Variation of Information indicates variables which describe roughly the same aspect of
the data. To do this the diameter of a subset of variables is defined as the maximum Variation
of Information between two variables in the set. Since smaller subsets (more partitions) will lead
to lower diameters, a two-objective optimization problem is formulated to balance cardinality
and diameter. This is solved by letting the user pick a maximum number of partitions MAXp

and finding a suitable partitioning using a hierarchical clustering algorithm, which starts with
one cluster per variable and iteratively joins the two closest clusters, as measured by their
diameter. Once a partitioning of the variables is found, a simple map is obtained as explained
before, by clustering and learning a decision tree. This technique outputs several data maps
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that are comprehensive, and allows identifying interesting and outlying clusters with respect to
subgroups of the variables which are probably mutually dependent.

3.3.3 Anomaly detection

Anomaly Detection is the field of data mining most closely related to the problem. In fact,
Anomalous Database detection is can be seen as a generalization of Anomaly Detection to
databases of any length. Anomaly Detection, in general, refers to the problem of finding patterns
in data which do not conform to expected behavior. The way expected behavior is characterized
varies among approaches, and in general specific formulations of the problem are solved, according
to the kind of data considered (eg. categorical vs numerical), availability of labeled data and
the type of anomalies detected, which is normally a consequence of the models used to describe
normal/anomalous data.

Anomaly detection has many applications, in situations in which an anomaly in data requires
attention. Anomalies in a transaction database (eg. credit card transactions) could, for example,
correspond to fraudulent transactions. These could be anomalous, for example, because of a
high amount, a very rare sender/receiver combination, the time or date of the transaction, or a
rare combination of all previous factors. Furthermore, anomalies could also be defined in terms
of sets of transactions. A series of multiple transactions between two particular credit card
holders could constitute an anomaly, while a single transaction between them occurs normally.
In surveillance data, anomalies could indicate undesirable events, such as an emergency worth
of attention. Anomaly detection can also be applied to text data to detect the emergence of
new topics.

Most anomaly detection techniques deal with univariate of multivariate data points, which
are not related to one another. According to [4] can be classified in:

Point Anomalies . The most studied case. Anomalies are single data points that are rare
with respect to the rest of the dataset.

Contextual Anomalies . A data point is anomalous only in a specific context. For example,
in spatial data, it is normally desired to find anomalous points with respect to the points
closest to them.

Collective Anomalies . Anomalies are sets of data points. Individual points may not be
anomalous, but their occurrence together could be.

To this list we should add our anomalous database problem, which is analogous to a point
anomaly, but an instance is represented by a complete database rather than a single data record.

According to the availability of labeled data, anomaly detection problems can be supervised,
semi-supervised and unsupervised. Supervised problems assume labeled normal and anomalous
data, which can be used to learn a classifier. Finding such labeled data, is, however, very difficult
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in practice. Semi-supervised instances assume only labels for the normal class, which is modeled,
and anything deviating from this model of normal behavior is classified as an anomaly. We are
more concerned about unsupervised detection, which operates under the critical assumption
mentioned before: most data points corresponds to normal behavior, and the data exhibits
structure.

3.3.3.1 Classification-based anomaly detection

Classification-based anomaly detection techniques operate under the assumption [4]:

A classifier that can distinguish between normal and anomalous classes can be
learned from the data.

In general, these techniques learn a single-class or multi-class classifier using labeled data
(requirement). In the multi-class case a classifier is trained for every class. It learns to distinguish
the class from the rest of the data. A data point is classified as anomaly if no classifier classifies
it as normal. Multiple approaches have been presented, making use of different classifiers:

Neural Networks . A network is trained to recognize the normal classes. The single output
simply indicates whether or not the record is considered normal.

Bayesian Networks . For the univariate case, a naive Bayessian network is trained on the
labeled data, with the normal classes and anomalous class as nodes. An observation is
assigned to the class with the largest posterior probability.

Support Vector Machines . For the one-class case: an SVM learns the region that contains
the normal instances.

Rule-based Techniques . For the multi-class case, rules are learned on the training set, with
the class on the right hand side of the rule. For each test example, the rule with highest
confidence which captures the test example is found. The inverse of the confidence of such
best rule is used as anomaly score for the point.

Unsupervised rule-based algorithms have also been proposed. One simple approach is to
mine frequent itemsets from the database, and every point is scored with a value equal to the
sum of the supports of the frequent itemsets it contains. Anomalous itemsets are then the ones
with the lowest scores [10].

3.3.3.2 Clustering-based anomaly detection

In contrast with classification-base approaches, clustering-based techniques are primarily used
in unsupervised anomaly detection. They may operate based on different assumptions:
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• Normal data instances belong to a cluster, while anomalies do not. Techniques based on
this assumption use clustering algorithms which do not assign every point to a cluster.

• Anomalies are far away from their closest cluster centroid. These techniques cluster the
data (possibly forcing every data point into a cluster) and then rank the points by distance
based on this assumption. These techniques, however, fail if the anomalous points form a
cluster.

• Small or sparse clusters are anomalous. This assumption solves the problem of anomalies
forming clusters by setting a threshold for the cluster size or density, below which its data
points are considered anomalies.

Note that clustering-based techniques may also be applicable to the anomalous database
problem, the requirement being a suitable (dis)similarity measure between a cluster of databases
and a single database. Although we follow a different approach, the MDL dissimilarity measure
could also be adapted for this purpose.

3.3.3.3 Statistics-based anomaly detection

Although it may not be clear how statistical anomaly detection techniques are applicable to our
problem, the concepts used in statistical techniques are very general and potentially applicable to
the problem of identifying anomalies based on compression sizes scores, which define probability
distribution which can be captured by a continuous model.

Parametric statistical techniques, for continuous variables, assume that the normal data is
generated by a distribution f(x, θ), where the anomaly score of a datum x is 1/f(x, θ). In other
words, the parameters θ of a probability distribution are learned from the training data, and
the probability of a test instance corresponds to the value of the PDF for that instance. The
Gaussian case is a very simple one, where values are distributed normally. Hypothesis tests can
be used to offer guarantees. Normally, the null hypothesis H0 is that the data instance has been
generated using the estimated distribution. If the statistical test rejects H0, the data point is an
anomaly. The test statistic provides an anomaly score for the data point.

In Gaussian models, a common arbitrary rule is to declare as anomalies all points that are
more than 3σ away from the mean. Also for normally distributed variables, Grubb’s test is able
to determine if the most extreme point in the data is an outlier. The hypotheses are, then:

H0: there are no outliers in the dataset

H1 is: there is at least one outlier in the dataset

If H0 is rejected, the most extreme value is considered an outlier. Repeated application of
the test to find more outliers can be biased due to masking effects, although it is sometimes
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used in practice. The Generalized Extreme Studentized Deviate (ESD) Test or Rosner test is
the correct way to test for multiple outliers [31]. Grubb’s test statistic is:

z =
|x− x̄|
s

A test instance is anomalous if:

z >
N − 1√
N

√√√√ t2α/(2N),N−2

N − 2 + t2α/(2N),N−2

where N is the sample size, t2α/(2N),N−2 is the value of a t-distribution at significance level
α/2N with N − 2 degrees of freedom.

The Generalization of the Grubb’s test to multiple anomalies, also under the assumption
that normal data is normally distributed, is the Rosner test or Generalized ESD [31]. Given
a maximum number of anomalies k to test for, a sample of size n and a confidence α the test
consists in:

1. Compute the Ri and critical values λi for i = 1, 2, ..., k:

Ri =
maxi|xi − x̄|

s

where xi is the value farthest away from the mean x̄ and s is the sample standard deviation.
The mean and standard deviation are recomputed on every iteration (for every i) after
removing the most outlying element. The corresponding critical values are:

λi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1)(n− i+ 1)

where tp,d is the p−percentile of a t-distribution with d degrees of freedom, and:

p = 1− α

2(n− i+ 1)

2. The number of outliers corresponds to the largest i such that Ri > λi.

Other techniques include mixtures of parametric distributions, where, provided labeled data,
normal and anomalous distributions are modeled separately. An observation is classified into
one of the two by applying Grubb’s test and comparing the statistics and thresholds.

Statistical techniques require the parameter estimation step to be robust against anomalies
in the data, in order to be useful in unsupervised detection. The underlying assumption that
the data is generated from such distribution should also be as accurate as possible.
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3.3.3.4 Information-theoretic anomaly detection

Of special interest for this work are anomaly detection techniques which have a basis on
information theory. Techniques in this area rely on quantifying the relative complexity of the
data. Several measures of complexity have been proposed, including relative entropy (Kullback
Leibler divergence), and approximations to Kolmogorov Complexity using standard compression
algorithms which [4].

Some of these techniques are based on the idea that anomalies greatly increase the complexity
of a dataset. In other words, if those anomalies are removed the complexity of the dataset should
decrease substantially. One way of formulating the problem is a two-objective optimization
problem: find a subset I of the dataset D such that C(D) − C(D \ I) is maximized and |I|
is minimized, where C is some measure of complexity of the dataset. Clearly both objectives
compete since larger subsets will lead to larger complexity reductions. Pareto-optimal solutions
can then be obtained for this front. Heuristics are necessary due to the size of the search space
(all subsets of the database).

Keogh et al. [18] present an algorithm to detect anomalous sections of a database. The
algorithm is based on Kolmogorov complexity (see 2.2) and consists on a divided and conquer
approach: recursively divide the database, picking every time the most anomalous section,
to be divided next. The anomaly of a section d of the database is measured by using the
Compression-based Dissimilarity Measure (CDM), with respect to the complete database D:

CDM(d,D) =
C(dD)

C(d) + C(D)

where C is a universal compressor and C(dD) is the compressed size of the concatenation of
d and D. The more similar d and D are, the lower their CMD.

No work has been proposed which uses KRIMP in the way studied here, although it has
previously been used in two papers on anomaly detection. In of them KRIMP was used to detect
a special kind of anomaly: the unexpected co-occurrence of itemsets. To do it, Bertens et al. [2]
propose using the number of bits needed to explain the most unlikely item co-occurrence in a
transaction. A transaction t is scored as:

score(t) = max
X,Y ∈S|X,Y⊆t

−log(P (XY )) + log(P (X)P (Y ))

where S is a set of patterns which can in principle be chosen. It is argued in favor of mining
S using KRIMP, to obtain a reduced set of non-redundant itemsets. P (X) is simply the relative
support of item X in the data, and P (XY ) the support of the itemset, which is obtained in the
mining step [2].

In a second paper KRIMP is used as benchmark for an anomaly detection algorithm for
categorical data [1]. The CompreX algorithm is based on MDL, but compresses the database
using an optimal set of code tables, rather than a single one. The algorithm seeks to exploit
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dependencies and independencies between categorical values by creating a vertical (column)
split of the dataset, with each feature set containing variables with strong dependencies. To do
it, every variable is first placed in its own feature set. All possible joins between pairs of feature
sets are ranked by their information gain:

IG(Fi, Fj) = H(Fi) +H(Fj)−H(Fi, Fj) ≥ 0

Joins are performed using a heuristic, and kept if they reduce the total compressed size
of database and code tables (ie. according to MDL). The process is repeated until no merge
reduces the compressed size.

Compression by multiple code tables is shown to outperform KRIMP in identifying single
point anomalies. The algorithm also has the advantage of being faster due to its ability to
separate independent sets of variables and avoid the mining of corresponding itemsets.

3.3.3.5 Spectral anomaly detection

Spectral techniques project a database into a lower dimensional subspace, with the objective of
separating normal data and anomalies in this subspace. Principal Component Analysis (PCA),
for example, allows identifying an orthonormal basis of the space, formed by a set of principal
vectors. The first principal vector corresponds to the direction of greatest variance in the data,
and the rest are orthogonal to it (and to each other), obtained in order of variance. The idea
of some of these techniques is that data points can be projected into a principal vector, and
analyzed with respect to the variance present in that vector. A data point that deviates from
the structure present in the data will have a large projection value [4].

Further approaches to Anomaly Detection can be found which are not so relevant to the
anomalous database problem. For example, Nearest Neighbor-based Techniques use the distance
from an observation to its k nearest neighbors as anomaly score. Others estimate the density of
the neighborhood of a data point to set its anomaly score [4].

3.3.3.6 Anomaly detection and anomalous database detection

Note that techniques for finding Point Anomalies that deliver an anomaly score based on the
complete data, like many clustering and spectral-based techniques could be generalized to
the anomalous database problem, by following the same procedure on the conjunction of the
databases, and then scoring each database with the average anomaly score of its data points:

ASDB(db) =

∑
x∈dbASP (x)

N

where ASP is the point anomaly score defined by the technique. However, this simple
technique clearly misses relations between items: a database formed by instances of only one
common itemset will be categorized as normal, while being anomalous.
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One particular technique of interest, due to also being based on compression, but which
does not fall naturally into any of the anomaly detection categories presented, is the Replicator
Neural Network technique [9]. In a Replicator Neural Network the input variables are equal
to the output variables (the dataset variables), and the network is trained to reproduce its
inputs. In other words, when trained on a dataset, the neural network learns an approximation
of it. It can also be said that the neural network compresses the database into its hidden units.
Concretely, a Replicator Neural Network is composed of three hidden layers (layers 2,3 and 4),
between the input and output layers of the same size. The activation function for the outer
hidden layers (layers 2 and 4) is:

Sk(θ) = tanh(akθ)

and θ is the standard weighed sum of the outputs of the previous layer. For the middle layer
(3) a staircase function is used. The activation function is divided into N levels (eg. N = 4 in
the article), inducing a clustering of the data in the hidden layer, where for L3 hidden units,
there are NL3 possible clusters. Each data point can be seen as been assigned to one of them
depending on where the input/output of the middle layer falls when presented the point. The
staircase function is given by:

S3(θ) =
1

2
+

1

2(k + 1)

N−1∑
j=1

tanh[a3(θ −
j

N
)]

For the output layer (5), either the sum of its weighted inputs (θ) or the sigmoid function
on θ are proposed as activation functions. An adaptive rate is used to learn the neural network,
making use of the mean squared error of the output. The network is applied to outlier detection
by scoring an observation with the Outlier Factor, the squared error, over all the variables:

OFi =
1

n

n∑
j=1

(xij − oij)2

where n is the number of variables, xij input variable j for observation i and oij output
variable j for the same observation. In other words, OFi is just the normalized squared L2

distance between input and output.

3.4 Anomalous Database Detection

The MDL dissimilarity measure (see section 2.5) provides a way to summarize the difference
between two databases into single real numbers: the database compression and cross-compression
sizes CTX(DY ), CTY (DY ), CTY (DX) and CTX(DX). It will be argued that these values behave
in a way analogous to the single variate entropy, and cross-entropy and both parts of the MDL
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dissimilarity measure behave very much like a Kullback-Leibler divergence, but taking into
account arbitrary order relations between itemsets.

The proposed approach rests on the assumptions that:

• The data has some degree of structure. Since the KRIMP algorithm is built to capture
the structure in itemset databases, it is necessary that normal or anomalous databases
exhibit some form of structure to obtain any meaningful results.

• Most input databases are not anomalous. Hence, the joint database (joining all input
databases, normal and anomalous) is a good representation of the non-anomalous distri-
bution.

• The ordering of the itemsets within a database is irrelevant (ie. all itemsets are equivalent).

Since the joint database is assumed to be a good representation of non-anomalous data, its
code table is expected to be a good succinct representation of it. Compressing normal data using
this joint database should lead to consistent compression sizes, while compressing anomalous
data should lead to compression sizes that are outliers with respect to the distribution of
compressed sizes of the normal data. Algorithm 1 shows the general approach to anomalous
database detection using KRIMP.

Input databases are first merged into a joint database, from which a joint code table is
extracted. Since we assume most of the itemsets in this joint database to be non-anomalous, the
joint code table is expected to capture most of the relations present in normal databases, and
thus to be able to compress normal databases better than anomalous databases. The compressed
size of database i, divided by its number of items (ie. the compressed size per item) is denoted
D(Di, joint). The compressed sizes of individual databases form the set: {D(Di, joint)|∀i ∈
{1, 2, ..., N}}. The reciprocal is also done: code tables obtained from every individual database
are used to compress the joint database to obtain the set {D(joint,Di)|∀i ∈ {1, 2, ..., N}}.
The resulting vectors define a distribution of compressed sizes, where larger sizes indicate
greater dissimilarity. Outliers are detected in these distributions using rules or a statistical
test for outliers. Multiple approaches may be valid here depending on the resulting probability
distribution. When the number of outliers is known, simple rules like taking the top n compressed
sizes from each distribution might be a better approach.

The reasons for taking the cross-compression size alone without subtracting the complexity
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of the database are explained in section 3.4.1.
Data: A set of N databases {D1,D2, ...,DN}
Result: Bits a1, a2, ..., aN indicating whether database i is considered anomalous.
create joint database Djoint = ∪Ni=1Di;
compress joint database: CTjoint ← KRIMP (Djoint);
for i← 1 to N do

compress Di: CTi ← KRIMP (Di);
calculate cross-compression distances:
D(Di, joint) = CTjoint(Di)/nitems(Di);
D(joint,Di) = CTi(Djoint)/nitems(Djoint);

end
perform a test TS1 for outliers in D(Di, joint);
perform a test TS2 for outliers in D(joint,Di);
for i← 1 to N do

if TS1i == 1 or TS2i == 1 then
ai = true

end
else

ai = false
end

end
Algorithm 1: The general Anomalous Database detection algorithm, which calculates cross-
compression sizes between the provided individual databases and the joint database, and
identifies anomalies in the distribution of compression sizes.

3.4.1 KRIMP and the KL-divergence

Consider the Kullback-Leibler divergence defined as:

DKL(X,Y ) = −Ex∼X [logPY (x)] + Ex∼X [logPX(x)]

And the MDL dissimilarity defined as:

DMDL(DX ,DY ) = CTY (DX)− CTX(DX)

Just as DKL(X,Y ) captures how well X can be compressed using a code optimized for Q,
so does DMDL(DX ,DY ) capture how well DX can be compressed using a code optimized to
compress DY , where the way items are compressed is determined by the covering function of
KRIMP. The main distinction between the two is that KRIMP takes into account the compressed
size of the code table when obtaining the best code table, which means that even assuming
optimal compression, the previous measure cannot be guaranteed to be positive, since a larger
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code table (in bits) could be able to compress the database better. However, this is rarely the
case when compressing real data across classes as shown by Vreeken et al. [40]. Even when
compressing individual transactions, compressed sizes attained by code tables from different
classes are consistently worse.

A real distribution P that concentrates most of its mass in the most dense areas of Q, but
with much lower variance may have a low DKL(P,Q) (although always greater than zero), while
DKL(Q,P ) would be much larger due to the effect of the logarithm. In a discrete distribution this
can be seen as most of Q’s elements being compressed by very large codes, since they correspond
to low probability in P . The same can be said about the MDL dissimilarity. Both directions of
compression reveal different ways in which the databases can be considered dissimilar.

There are various reasons for detecting outliers using the distribution of compressed sizes
rather than the dissimilarity measure. Consider the MDL dissimilarity between databases X and
Y given above. First, the self-compression term CTX(DX), which depends only on the database
being compressed, is very much necessary when using MDL dissimilarity as a similarity measure.
This is because it subtracts the complexity of the database; it adjusts for the fact that some
databases are very simple, and thus cross-compressed to a small size, without being similar.
However, in the anomalous database problem, all normal databases are expected to have a
reasonably similar complexity, and thus a similar self-compression size. Databases that are more
complex than the norm will necessarily have a greater cross-compression size than the norm,
and, if significantly more complex, will show up as anomalies in the distribution of CTY (DX).
Databases that are less complex than the norm will have a smaller cross-compression size,
possibly lower than the norm. This might appear problematic but it means that such databases
are expected to compress the joint database (more representative of a normal database) badly.
These databases will then likely show up as anomalies in the distribution of CTX(DY ).

A second reason is that this second term in the MDL dissimilarity is expected to have a very
high variance when the individual databases are small. The term is also expected to be reasonably
independent of the first term, since the code tables may be very different for small databases,
which causes the variance of both terms to add up, obscuring the results simply because of the
size of the databases. The rationale for detecting outliers in both distributions separately is
then that both distributions may capture different types of anomalies, and aggregating them
may obscure results that are otherwise clearly anomalous.

One extra consideration in the anomalous database problem is that the joint database and
the individual databases are in most cases of very different lengths. Even though the dissimilarity
scores can be normalized by dividing by the self-compressed size of the databases that is being
compressed as proposed in [40], the effect of generating code tables from comparatively smaller
databases is that the variability expected in these code tables is much larger. Since the code sizes
follow the logarithm of the probability, much higher variance is expected in the distribution of
compressed sizes of the joint database using the individual database code tables than the other
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way around. Extreme variance can reduce the accuracy of the method. Where this situation is
identified it may be preferable to consider only the compressed sizes of individual databases by
the joint code table. This is the case, for example, when the algorithm is reduced to perform
anomaly detection of single itemsets.

3.5 Compressed size distribution of synthetic data

The idea behind the algorithm was first tested using synthetic data, to characterize the distribu-
tion of compressed sizes obtained by the algorithm on data with a single mode.

A set of 200 normal (non-anomalous) databases of size 200 were obtained by sampling
itemsets from a categorical, or multinoulli distribution of size 40. The categorical distribution
parameters were uniformly sampled. The lengths of the itemsets were sampled from a Poisson
distribution with mean λ = 5. This resulted in an itemset database of size 40000, with an
alphabet of size 40, generated from a multinomial distribution.

The database was joined and compressed, and the cross-compression sizes D(Di, joint) and
D(joint,Di) were obtained for the 200 databases. Figure 3.1 shows the histogram of the obtained
compressed sizes. The experiment was repeated multiple times, and for different alphabet sizes
with similar results. This leads to conclude that a simple distribution of cross-compressed sizes
can be expected for this kind of simple unimodal data.

Because the total cross-compression size is the average of the cross-compression sizes of the
itemsets in the database, it is suitable to be analyzed in the light of the Central Limit Theorem
which establishes that the average of independent identically distributed variables approaches a
normal distribution. First consider the total compressed size of the database, which is the sum
of the compressed sizes of the itemsets. Under the assumption that observations (itemsets) in
normal databases are independently sampled from a single underlying distribution and databases
have the same length, the Central Limit Theorem applies to cross-compression of databases
using KRIMP. Independence comes from the fact that itemsets are sampled independently and
KRIMP also covers every itemset independently. Sizes are identically distributed because all
itemsets in the database are sampled from the same underlying distribution. When taking the
average size per item independence does not hold because KRIMP covers complete itemsets.
However, in this case experimental results indicate that the distribution is very close to normal.

In a real application scenario, however, normal databases are not necessarily sampled from
exactly the same underlying distribution, and itemsets are not independently sampled. In fact,
in applications such as text, dependencies between itemsets are likely strong. The degree to
which normality holds for real data must be determined experimentally.
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Figure 3.1. Distribution of normal D(Di, joint), for a synthetic database gener-
ated from a multinomial distribution. The red plot is the MLE fit of a normal
distribution.

3.5.1 KRIMP requires structure

It is important to note that the KRIMP algorithm requires significant structure in the data for
the MDL dissimilarity to be meaningful. Datasets with no dependencies within itemsets like
the ones generated from categorical, or multinoulli distributions tend to generate code tables
which do not work well to define a dissimilarity measure. This is because less common items
will be kept in the code table as single items, without forming part of multi-item itemsets in
the code table. This happens because more common items already form itemsets with other
common items, and less common items are not common enough for the 2-itemset that they
form to improve the code table. This means that the less common single items will be covered
most of the time by the single alphabet item. These single items, although uncommon, might
then have a relatively small code. In some cases these might be among the smallest codes in
the code table, although the item is relatively uncommon. When a database containing a much
bigger proportion of this item is covered using such a code table, its compressed size may be
small, a misleading result given that the item distributions are very different.

In the case of data generated from a categorical distribution, one is better off using the
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Figure 3.2. Distribution of normal D(joint,Di) for a synthetic database generated
from a multinomial distribution. The red plot is the MLE fit of a normal distribu-
tion.

KL-divergence as dissimilarity measure, since in facts it captures all the difference between both
datasets. In short, KRIMP works better the more structure the data has, and items which have
little or no dependencies with other items will likely pose a challenge. In general, these cases can
be identified by inspecting the database code tables. Preliminary experiments made this clear
and this is the reason why the algorithm was not tested further using categorical distributions.
The following section performs experiments making use of real data, with much more significant
structure.

3.6 Experiments with classification databases

To assess the ability of KRIMP to detect anomalies in real data, several UCI datasets used in
pattern set mining were used to test the algorithm. These databases had to fill a few requirements,
namely having at least a class with enough observations to use as normal data. The number
and size of the normal databases was adjusted to use the vast majority of the observations in
the majority class. Samples were drawn from the rest of the classes repetitively to form possibly
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anomalous databases, termed foreign databases (to differentiate from real anomalies). Table
3.1 shows the datasets used and some general information. The goal was to characterize the
trade-offs made by the algorithm in detecting anomalous databases based on their structure,
as well as the sensibility to the size of the databases and the proportion of foreign data. Note
that unsupervised anomaly detection is different from binary classification and accuracy / recall
values should not be taken as benchmarking the algorithm.

3.6.1 Experiment

One iteration of the experiment with classed itemset databases can be outlined as:

1. Sample N normal databases of size s from a single class (ie. the normal class).

2. Sample n foreign databases of size s from the rest of the dataset.

3. Run algorithm 1 on the conjunction of the databases.

Table 3.1 shows the databases used, as well as the number of classes used as normal classes,
for each database. These always correspond to the largest classes in the database. The maximum
class dissimilarity, as reported in [40] is included for reference. This are the minimum and
maximum dissimilarities between pairs of classes in the database, per the aggregate measure
proposed in [40] and presented in section 2.5. This should give a measure of how distinguishable
the classes in the database are from one another.

Dataset Rows Alphabet Classes used Dissimilarity minsup

adult 48842 95 2 0.6 - 0.6 0.001
mushroom 8124 117 2 8.24 - 8.24 0.02
nursery 12960 27 3 1.26 - 10.12 1
pendigits 10992 76 10 1.33 - 4.43 0.002

Table 3.1. UCI datasets used for the anomaly detection experiments. The minimum
support listed is the one used for all experiments involving the database.

3.6.2 Detecting anomalies

In this first experiment, all the classes from table 3.1 are used as normal class, with the number
of databases fixed at 100 for all classes. The number of foreign databases is fixed at 10. Each
experiment is repeated 30 times. The goal is to measure the behavior of the algorithm on the
different classes the data set contains, which vary in size and dissimilarity.

The precision and recall of the algorithm in detecting the foreign databases were measured
based on three different methods of selecting anomalies from the resulting compressed sizes:
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Top N. Pick the top N compressed sizes from each distribution as anomalies (ie. a maximum
of 2N). N is set to the number of foreign databases introduced in the dataset unless
specified otherwise. This is to give a better idea of the results achieved when the number
of anomalies is known. It is not suggested as an anomaly detection method unless the
number of anomalies is known beforehand.

3SD rule. Regard as anomalies all compressed sizes further than 3 standard deviations away
from the mean.

Rosner test. Assuming an approximate normal distribution of non-anomalous compressed
sizes (the validity of this assumptions is investigated further), the test by Rosner [31] is
used to detect anomalies in the compressed sizes. The Rosner test is run for a maximum
of 2a anomalies, where a is the number of introduced foreign databases, and α = 0.05.
Note that the validity of the t-distribution approximation to the Rosner critical values is
untested for k > 10 [31]. This is not a limitation of the Rosner test itself. Although the
approximation is used here to test for more than 10 anomalies, in most experiments this
number is not exceeded greatly in order to stay withing reasonable bounds. Furthermore,
experiments appear to indicate that the approximation remains useful even when the
number of anomalies greatly exceeds 10, as shown in section 3.6.3.

Preliminary tests showed that outliers on the left side of the compressed size distributions
where unlikely when running algorithm 1 on real and synthetic data. This is expected
since, as analyzed in section 3.4.1 these correspond to a very special kind of anomalies:
databases which tend to have a more simple structure while also sharing the most common
itemsets in the code table. Having observed this it was decided to use the single-tailed test
for anomalies in the right side of the distributions. When this is not the case, however,
it is recommended to use the two-tailed test. Anomalies found in the left hand side can
either be ignored (since they are likely to show up as anomalies in the right hand side in
the second distribution as analyzed in section 3.4.1) or directly detected as anomalies.

Both compressed size distributions are considered separately and then joined as in: a database
i is considered anomalous if D(Di, joint) is anomalous in the distribution of single database
compressed sizes or D(joint,Di) is anomalous in the distribution of joint database compressed
sizes.

Table 3.2 shows the results obtained, along with the database size used for each class. Since
the database size is simply s = floor(classSize/100), and the classes have very dissimilar sizes,
the database sizes are vary variable, ranging from 10 to 371.

Results indicate that the 3SD Rule tends to favor accuracy over recall, while the Top N
and Rosner test criteria favor recall, but also display very high accuracy. It stands out that the
Rosner test is able in some cases to outperform the top N approach in accuracy even though
it has less information. Interestingly, the most challenging classes are also the largest ones.
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Table 3.2. Results of performing anomaly detection for multiple normal classes. s
gives the database size. anomalous/normal indicates the ratio of the average
compressed sizes using normal and foreign databases, where D(Di, joint) and
D(joint,Di) are the two distributions.

Class s
Top N 3SD rule Rosner test foreign / normal

Acc Rec Acc Rec Acc Rec D(Di, joint) D(joint,Di)

adult1 371 0.94 1.00 1.00 0.64 0.97 1.00 1.24 1.19
adult2 116 0.97 1.00 1.00 0.51 0.88 1.00 1.25 1.47
mushroom1 42 1.00 1.00 1.00 0.93 0.92 1.00 1.73 1.88
mushroom2 39 1.00 1.00 1.00 0.90 0.82 1.00 1.76 2.18
nursery1 43 1.00 1.00 1.00 0.78 0.99 1.00 1.36 1.35
nursery2 42 0.89 1.00 1.00 0.58 0.97 1.00 1.23 1.12
nursery3 40 0.94 1.00 1.00 0.64 0.99 1.00 1.34 1.14
pendigits0 11 0.97 1.00 1.00 0.48 0.97 1.00 2.30 1.15
pendigits1 11 0.97 1.00 1.00 0.52 0.99 1.00 2.29 1.16
pendigits2 11 0.97 1.00 1.00 0.40 0.98 1.00 2.16 1.16
pendigits3 11 0.99 1.00 1.00 0.48 0.98 1.00 2.62 1.25
pendigits4 11 0.89 1.00 0.97 0.44 0.99 1.00 1.92 1.08
pendigits5 10 0.99 1.00 1.00 0.45 0.99 1.00 2.27 1.19
pendigits6 10 0.81 1.00 0.79 0.38 0.99 1.00 1.72 1.04
pendigits7 10 0.84 1.00 0.95 0.36 0.99 1.00 1.74 1.06
pendigits8 10 0.94 1.00 1.00 0.39 0.98 1.00 1.99 1.17
pendigits9 10 0.96 1.00 0.99 0.38 0.99 1.00 2.00 1.15

This is however due to the biggest databases having classes more similar to one another. The
experiments with pendigits use only 10/11 itemsets per database but these are enough to capture
the common structure.

3.6.2.1 Normality

It was verified to what degree the normal class distributions obtained from the FIMI databases
resemble a normal distribution, in this case with real data, since this is the assumption underlying
the use of Rosner’s test. Figures 3.3 and 3.4 show the histogram, fitted normal distribution
(MLE), Q-Q and P-P plots for the 100 normal databases used in one run of the experiment
using the minority class of the adult database.

In general it was found that for most of the classes the distribution of compressed sizes can
be approximated reasonably well by a normal distribution. The distribution plots obtained for
the rest of the databases are shown in Appendix A. The minority class was used for these plots
because it is the one for which the smallest databases were used, and thus the one with highest
expected variance.
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Figure 3.3. Distribution of normal D(Di, joint), for the minority class of the adult
database, in one run of the experiment of table 3.2.

3.6.3 Adding anomalies

A natural question is how the algorithm behaves in the presence of more anomalies. The next
experiment makes use of the nursery database due to it being one of the most challenging
databases in terms of dissimilarity between classes. Now the number of foreign databases is
varied in increments of 4. The number of normal databases is kept fixed at 100 and the size of
the databases is also kept fixed at 43 (in order to almost completely use the normal class’ rows).

Table 3.3 shows the results for this class. As would be expected, as the number of for-
eign databases increases, the ratio between the compressed size of foreign databases and the
compressed size of normal databases decreases (last two columns), making them harder to
distinguish. Note however that even for 48% of foreign classes, the topN and Rosner test criteria
show almost 100% accuracy and recall. This is explained by the very low variance observed
in the compressed size distributions. Note however that in this experiment the Rosner test
is being used for numbers of anomalies far beyond those cited in the original paper [31], and
t-distribution approximation might not be exact for these values.

It stands out that the experiments with a lower number of anomalies do not have accuracy
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Figure 3.4. Distribution of normal D(joint,Di), for the minority class of the adult
database, in one run of the experiment of table 3.2.

of 1 for the Rosner test. This is due to a particularly anomalous normal database that is being
picked up by the Rosner test, but not by 3SD rule (ie. a nuance of the data).

The rest of the classes in the nursery database displayed a very similar behavior. Figures 3.5
and 3.6 show the average ratio between compression sizes of anomalous databases / code tables
and the normal ones for the three largest classes in the nursery database. These tend to indicate
that class 1 is the most easily distinguishable and class 2 the hardest. For this database, the
distribution of compressed sizes of individual databases (first figure) appears to better expose
anomalies in most cases, since the ratios tend to be higher. Given the very significant amount of
structure in this database it is likely that compressing in both directions is mostly redundant.

Table 3.4 presents the results of the same experiment on the majority class of the adult
database. This is the most challenging of the tested databases despite being the largest and,
as expected, accuracy and recall decrease with the addition of foreign databases. It is still
remarkable that the Rosner test algorithm is able to detect with 95% accuracy and recall up
to 18 anomalies. These results, and the normality plots are indications that the normality
assumption is indeed appropriate for itemset databases with sufficient structure.
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Table 3.3. Results of performing anomaly detection on the majority class of the
nursery database for different numbers of anomalies. anomalous/normal indicates
the ratio of the average compressed sizes using normal and foreign databases,
where D(Di, joint) and D(joint,Di) are the two distributions. The database size
was kept fixed at s = 43 and the number of normal databases at 100.

Foreign DBs
Top N 3SD rule Rosner foreign / normal

Acc Rec Acc Rec Acc Rec D(Di, joint) D(joint,Di)

4 1.00 1.00 1.00 1.00 0.97 1.00 1.67 1.40
8 1.00 1.00 1.00 0.99 0.99 1.00 1.45 1.37
12 1.00 1.00 0.90 0.26 0.98 1.00 1.30 1.34
16 1.00 1.00 0.27 0.02 0.99 1.00 1.28 1.31
20 1.00 1.00 0.00 0.00 0.99 1.00 1.27 1.28
24 1.00 1.00 0.00 0.00 0.99 1.00 1.25 1.26
28 1.00 1.00 0.00 0.00 0.99 1.00 1.22 1.24
32 1.00 1.00 0.00 0.00 0.99 1.00 1.22 1.22
36 1.00 1.00 0.00 0.00 0.99 1.00 1.20 1.20
40 1.00 1.00 0.00 0.00 1.00 1.00 1.20 1.18
44 1.00 1.00 0.00 0.00 1.00 1.00 1.18 1.16
48 0.99 1.00 0.00 0.00 1.00 1.00 1.18 1.15

Table 3.4. Results of performing anomaly detection on the majority class of the adult
database for different numbers of anomalies. anomalous/normal indicates the
ratio of the average compressed sizes using normal and foreign databases, where
D(Di, joint) and D(joint,Di) are the two distributions. The database size was
kept fixed at s = 116 and the number of normal databases at 100.

Foreign DBs
Top N 3SD rule Rosner foreign / normal

Acc Rec Acc Rec Acc Rec D(Di, joint) D(joint,Di)

14 0.92 1.00 0.90 0.16 0.94 0.98 1.21 1.43
18 0.89 1.00 0.67 0.06 0.95 0.95 1.19 1.39
22 0.87 1.00 0.57 0.04 0.90 0.84 1.17 1.37
26 0.81 0.99 0.33 0.01 0.64 0.60 1.13 1.34
30 0.76 0.98 0.42 0.02 0.25 0.22 1.11 1.32
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Figure 3.5. Ratio between the average compressed size per item of foreign databases
and average compressed size per item of normal databases (ie. ratio of D(Di, joint)
between foreign and normal databases) for the three largest classes in the nursery
database, as a function of the number of anomalies.

Figure 3.6. Ratio between the average compressed size per item of the full database
using code tables from foreign databases and using code tables from normal class
databases (ie. ratio of D(joint,Di) between foreign and normal databases) for
the three largest classes in the nursery database, as a function of the number of
anomalies.

3.6.4 Effect of database size

The adult database was used to asses the effect of database size on the algorithm. The smallest
of the two classes in the database was used as normal class, and the database size was varied
from 10 to 100 itemsets, while keeping the number of normal databases (100) and number of
foreign databases (10) fixed. A relative minimum support of 0.001 was used for frequent itemset
mining and the experiments were repeated 10 times.

Table 3.5 shows that, as expected, the algorithm consistently takes advantage of having more
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data at its disposal. Note how the Rosner test and 3SD rule tend to favor accuracy over recall
for smaller databases, and are able to identify more databases as anomalous as the amount of
data increases. This is a result of the reduction of variance made possible by the extra data,
which causes the compressed sizes to get closer to bimodal. It is only with 100 itemsets per
database that the Rosner test identifies the 10 foreign databases almost perfectly.

Table 3.5. Results of performing anomaly detection on the minority class of the adult
database for different database sizes. anomalous/normal indicates the ratio of the
average compressed sizes using normal and foreign databases, where D(Di, joint)
and D(joint,Di) are the two distributions. The number of anomalies was kept
fixed at 10 and the number of normal databases at 100.

s
Top N 3SD rule Rosner foreign / normal

Acc Rec Acc Rec Acc Rec D(Di, joint) D(joint,Di)

10 0.33 0.55 0.83 0.14 0.67 0.10 1.19 1.18
20 0.45 0.76 0.90 0.21 0.68 0.19 1.21 1.19
30 0.56 0.88 0.90 0.19 0.90 0.22 1.24 1.22
40 0.61 0.91 1.00 0.16 0.90 0.16 1.24 1.24
50 0.78 0.99 1.00 0.20 0.80 0.27 1.25 1.29
60 0.84 0.99 1.00 0.24 0.90 0.36 1.25 1.33
70 0.85 1.00 1.00 0.33 0.96 0.85 1.25 1.35
80 0.91 1.00 1.00 0.30 0.95 0.99 1.24 1.38
90 0.92 1.00 1.00 0.34 0.97 0.99 1.25 1.42
100 0.96 1.00 1.00 0.46 0.87 1.00 1.25 1.48

Figure 3.7 gives a better idea of the variability in the 10 runs of the experiment. Note that
the first two ratio plots have a different y axis scale. The average ratios between anomalous
and normal data are very stable, however, up to s = 60 some runs of the experiment report no
outliers. It is until n = 70 that results start being consistent. Note also that in this experiment,
the ratios in D(joint,Di) are greater than those in D(Di, joint). Accordingly, the results indicate
that it was in this distributions where most outliers were detected, contrary to the experiments
with the nursery database. This can only be attributed to the structure of the databases and
shows the importance of detecting outliers in both distributions.

3.7 An interpretable experiment

In order to better illustrate the idea behind the algorithm, a simple experiment was set up
making use of highly interpretable data: natural language. It was decided to make use of freely
available Wikipedia articles. A set of normal databases was created by harvesting the raw text
of the Wikipedia articles of the top 40 highest-grossing artists and bands in history, as per
the relevant Wikipedia ranking at the time of writing. Data was filtered only by removing
punctuation and stopwords from a list of 152 English stopwords and lemmatizing. One itemset
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Figure 3.7. Box plots for the foreign/normal ratios and Accuracy and Recall when
using the Rosner test to select anomalies in the variable database size experiment.
Boxes span from the 0.25 percentile to the 0.75 percentile for the 10 runs of the
experiment (3d and 8th values) and values outside are drawn as an x.

was created per sentence. The resulting itemsets were then filtered to remove the less common
words on each article using a relative threshold, for each document separately. No further
pre-processing was done, as the goal of the experiment was only illustrative.

Articles in the normal set tended to contain biographies, career descriptions, lists of awards
and descriptions of historical and personal happenings. Three unrelated articles were separately
added as anomalies, one for a fruit (mango), one for a historical figure (George Washington) and
one for a famous football player (Lionel Messi), the one intuitively more similar, but anomalous
in any case. The anomaly detection algorithm was run, compressing with a minimum threshold
of θ = 0.005. Figure 3.8 shows the distribution of compressed sizes. The red line indicates the
corresponding compressed size for the anomalous text. The three anomalies are easily identifiable
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in at least one of the plots. The article on the football player is the hardest to distinguish as
it is not anomalous in the forward distribution. This illustrates the fact that the two ways
of compression capture different aspects of dissimilarity. In this case the article is relatively
easy to compress using the joint code table, as it contains similar vocabulary, most certainly
also describing life, career and awards. The variance in the normal data is enough to obscure
it as an anomaly. However, normal articles contain music-specific vocabulary that is not easy
to compress in the backward direction, and this leads to the article being clearly identified as
anomalous in this distribution.

The left histograms look very much alike, and in fact these forward distributions were almost
identical despite the fact that a different anomaly, and of different length, was added every time.

Besides illustrating the idea behind the algorithm, this simple experiment shows that KRIMP
is able to find obvious anomalies in text data. An important question is whether KRIMP would
be able to capture much more subtle relations in text in a way that is useful for classification.
The following chapter explores that possibility in the context of authorship attribution.

3.8 Generalization to multi-modal databases

One drawback of the anomaly detection algorithm comes from the weakness of the dissimilarity
measure when the normal database is heavily multi-modal. For example, consider an input with
100 normal databases and 10 databases with a very different structure. If these 10 databases are
similar to one another in structure, one may wish to consider them normal, while considering
them as anomalous if every individual database has a different structure. The proposed algorithm
only partially behaves in this way since 10 databases with similar structure will tend to have
lower compressed sizes than if each has a different structure, as the common structure tends to
be aggregated in the joint database. However, this may not be enough to offset the effect when
the complexity of the group of database is significantly greater than that of the main mode of
normal data.

An algorithm which clusters the data (for example, as proposed in [38]) before performing
anomaly detection on the clusters would provide a solution for this problem. The extension of
the algorithm to deal with this situation can be outlined as:

• Cluster the databases using the KRIMP clusterer [38], or some other appropriate clustering
algorithm that considers structure.

• Apply the anomaly detection algorithm to each cluster. Because clustering algorithms will
assign elements to the cluster with which they share the most structure, if an element is
anomalous within a cluster, it can be expected to be anomalous within any other cluster.

• Determine if some of the clusters are made up of anomalous data. These are clusters
with little common structure within their itemsets. A simple approach would consider the
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(a)

(b)

(c)

Figure 3.8. Histograms of compressed sizes D(Di, joint) (left) and D(joint,Di)
(right), for the experiment using Wikipedia articles. The inserted anomalies are
the articles for: (a) Mango fruit. (b) George Washington. (c) Lionel Messi. The
red line indicates the cross-compression size corresponding to the anomalous
document.

clusters in order of variance of the distribution of compressed sizes of their elements, along
with a threshold or rule for selecting top elements.
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3.9 Conclusions

The most important conclusions derived from the experiments are:

• The proposed anomaly detection algorithm behaves in a consistent way and is able to find
subjective anomalies that depend on the context defined by the normal data. Whether or
not a particular database is classified as an anomaly depends on several factors:

– Its cross-compression sizes, which are a measure of how anomalous the database is.

– The number of databases with similar compression sizes. The Rosner test was used
to govern this decision under the normality assumption.

– The structure of the normal data.

• Cross-compression sizes are able to consistently rank the data that "does not belong" to
a normal class. When the number of anomalies is known, simply considering the largest
cross-compression sizes as anomalies gives very high accuracies even for small databases.
The Rosner and 3SD tests assume less knowledge.

• The assumption of normality of the distribution of compressed sizes is justified for databases
that are relatively single-modal. The Rosner criterion performs remarkably well given
enough data. Code tables tend to capture the behavior of the normal data well as long as
most of the data is normal.

• A limitation of the approach comes from the fact that dissimilarity is summarized into
two single real numbers. The algorithm does not distinguish between databases with the
same compressed sizes. This particularly affects multi-modal databases, where a group
of similar databases that is harder to compress than the norm might be signaled out as
anomalous, despite it not being particularly rare.

• A limitation specific to the use of the Rosner test is the need of data to validate the
normality assumption. However, other selection rules, presented here or not, are able to
provide useful results given the anomaly rankings that are output from the process.
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4
Information-theoretic authorship attribution

4.1 Introduction

One area of study in which one wants to quantify the similarities and differences between
documents, which can be regarded as itemset databases, is that of natural language

processing. The traditional bag-of-words assumption used in many algorithms disregards the
ordering of the words within documents, as well as all structural information. Even when word
ordering and sentence division are clearly important to us, computers have shown that given
enough documents, reducing the representation to word or n-gram counts per document is
enough to perform many tasks in the field, such as topic extraction, as in the Probabilistic Latent
Semantic Analysis [12] and Latent Dirichlet Allocation techniques; and text categorization,
using a variety of classification algorithms.

Another problem that typically makes use of such aggregated representations is algorithmic
authorship attribution, in which one wishes to determine the most likely author of a text whose
authorship is disputed, but there are likely candidates. Other than the disputed text, the input
data consists of a set of collection of texts (eg. books) from the candidate authors. Authorship
attribution has a long history, with the most famous example in computational attribution
being that of the Federalist Papers [13]. The statistical analysis of text productions, known as
stylometry, however, predates computers by at least half a century, dating back to the late 19th
century, with work by Thomas Mendenhall on word length spectra [26].

Such techniques have not only been applied to historical texts, but also to forensics [23], in
tracking down criminals based on their writings [13], plagiarism detection, and even in attempts
to de-anonymize important figures [14]. Target documents have expanded from literary works
to text written at online forums and even computer source code [3].
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Authorship attribution algorithms typically define a (dis-)similarity measure between texts
and assign likelihood scores to each author having created the disputed text. In this chapter,
the bag-of-words assumption is questioned by using the KRIMP algorithm to capture structure
in text. Several ways of representing text documents as itemset databases are tested, in order
to determine if taking into account arbitrary order co-occurrence relations between itemsets
(words or n-grams) is able to provide an improvement to the accuracy of authorship attribution
algorithms, with respect to traditional approaches based on dissimilarity measures over the
vector of element counts.

The KRIMP-based classifier used for the experiments was proposed by van Leeuwen et al. [37].
The algorithm was adapted from classifying single itemsets to classifying complete databases.
This change is trivial, since the compressed size of the database is the sum of the compressed size
of its itemsets. Its application to literature is however novel, and brings important challenges,
namely the preprocessing of the data and the choice of data representation becomes central to
the accuracy of the algorithm. This involves mainly the selection of an alphabet and a way of
partitioning the text into itemsets with relevant common structure that can be exploited by
the algorithm. At the same time, alphabet elements must ideally have dependencies that are
relevant to the attribution task, in order to benefit from the MDL dissimilarity measure.

The chapter begins by presenting the algorithm used: the KRIMP classifier. Experiments
were performed on two datasets with very different characteristics: a large corpus of books
from Victorian novelists, and a smaller corpus of songs. Emphasis was placed on carefully
detailing the data preprocessing steps, as these are very important for the interpretation of
the results using KRIMP. The objective is to determine whether or not using KRIMP to find
arbitrary order intra-item relations offers an advantage over much less expensive measures like
the Kullback-Leibler Divergence, frequently used in authorship attribution and text classification.
The two datasets are a good fit for this task since novels and poems exhibit very different kinds
of structure.

4.2 Authorship Attribution

Authorship attribution is a form of text classification with very specific needs. Depending on
the type of data at hand and objective of the algorithm, authorship attribution algorithms
might attempt to capture stylistic or content-dependent information to differentiate among
writings from different authors. The core algorithm consists normally in a generic classification
algorithm (eg. SVM) or a dissimilarity measure like the Kullback-Leibler divergence. The main
differences with, for example, document classification by topic are normally in the preprocessing
and feature extraction steps, which must be decided based on the knowledge of the problem.
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4.2.1 Feature extraction for Authorship Attribution

As explained further in the next section, not all authorship attribution techniques make use
of explicit features. However, most classification-based algorithms do define a feature set,
attempting in most cases to capture author style and choice. The most common authorship
attribution features present in the literature are:

Words . The bag-of-words representation is a common one in the text domain, in problems
like document classification, and topic extraction [12]. However, when it is not desired to
take topics into account for attribution, the word profile of a particular author is reduced,
normally by considering only function words, specific lists of common words, or the set of
most frequently occurring words [33]. While in topic extraction / classification many of
these words would be removed from the document representation due to being stopwords
or having a low tf-idf score, in authorship attribution the distribution of these common
words has shown to be able to distinguish between up to 20 authors with accuracies greater
than 50% [7].

Character n-grams . A character n-gram representation of a text is obtained by applying
a sliding a window of length n to the text, normally including punctuation. Character
n-grams are an attempt to capture more stylistic information in features that are easy
to obtain from the text. n-grams capture punctuation and word choice, as well as other
aspects such as spelling mistakes and have also been shown to be effective [7, 32]. However,
n-gram profiles have the problem of being heavily biased when texts have been edited.
N-grams also produce an explosion in dimensionality relative to word profiles. This last
problem, however, is not as important for n-grams of size 2 or 3, for languages using the
Latin alphabet. n-gram sizes in the range [2, 4] have been shown to be the most effective,
[7], with accuracy dropping for very large n-grams due most certainly to the resulting
sparseness.

When using n-grams as features small n-gram sizes do not necessarily increment the
number of features, relative to the use of words. However, when representing documents
as itemsets (eg. for compression using KRIMP) using n-grams means an explosion in the
number of itemsets per item, relative to the use of words. A natural question is whether all
n-grams are important for the attribution task. Sapkota et al. [32] present a classification
of n-grams into 10 categories:

Affix n-grams .

Prefix. Covers the first n characters of a word at least n+ 1 characters long.

Suffix. Covers the last n characters of a word at least n+ 1 characters long.

Space-prefix. Begins with a space.
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Space-suffix. Ends with a space

Words n-grams .

Whole-word. Covers a word of exactly n characters.

Mid-word. Covers a part of a word. Does not include the first or last characters.

Multi-word. Spans multiple words.

Punctuation n-grams .

Begin punctuation. Its first character is punctuation but middle characters are
not.

Mid-punctuation. Contains a punctuation character that is not its first or last
character.

End punctuation. Its last character is punctuation but middle characters are not.

Sapkota et al. [32] perform experiments using only n-grams of every one of the 10 sub-
categories on two English datasets, a single domain and a cross-domain dataset. Results
indicate that affix and punctuation n-grams tend to be the most effective, specially in the
cross-domain setting. When the corpus comes from a single domain mid-word features
become relevant. Experiments combining categories showed that affix and punctuation
features alone perform better than the three categories combined.

Semantic features . Features that attempt to capture the semantics, as opposed to the writing
style of a text, through, for example the use of a POS tagger to include some degree
of semantic information. These features might also consider synonymity and semantic
dependencies [35].

Derived features . Other features proposed in the literature include words and sentence length
distributions and aggregated vocabulary richness measures [7]. These features are not used
in this work, since these are calculated from the complete document, and translation to
itemsets is not straightforward. Their use is thus mostly limited to general classification
algorithms.

Yet another class is that used by many compression algorithms, which do not explicitly
define a feature set, and are thus normally not n-gram nor word features, but variable-length
character-level substrings which form the compressor’s dictionary or model.

Features can also be subdivided based on the role they play on putting together a piece of
writing, as [23]:

Lexical features These are related to the extension and choice of vocabulary of the author.
Derived features such as vocabulary richness also fall into this category.
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Syntactic features Include punctuation and function words, and are related to habits and
choices when putting sentences together.

Structural features capture even higher-level structural choices, when putting together para-
graphs and complete documents. Some are paragraph length, indentation, and use of
signature.

Content-specific features These are similar to lexical features but are topic-specific. Even
when writing about the same topic, authors tend to differ in their choice of words.

Li et al. [23] argue that these feature classes together form a writeprint, applied uncon-
sciously when putting together a document. Other authorship attribution studies support these
ideas Grieve [7], as different features in these categories have independently shown to encode
information relevant for determining authorship. It is only reasonable to assume that, when
aggregated correctly, the discriminative power of the features would increase.

4.2.2 Algorithms

Although in principle any general classification algorithm can be used for the authorship
distribution problem, the fact that n-gram and word representations result in a probability
distribution vector makes it straightforward to use dissimilarity measures for distributions.
Algorithms making use of the word and n-grams representations can roughly be divided in
two categories: simple distance measures and general classification algorithms. A third class
of algorithms are compression algorithms, which generally do not make use of the features
presented before, but of the lower level byte/character representation of the original text. Yet
another class of methods that does not make use of explicit features is that based on language
models.

4.2.2.1 Distance measures

Some distance measures proposed in the literature for the attribution task are:

Chi-Squared distance . This is a classic distance used in attribution studies. The Chi-Squared
statistic is used to determine if a sample could have been drawn from a population. The
Chi-Squared statistic is applied to the attribution problem as:

χ(Q,Aj) =
∑
x

(q(x)− aj(x))2

aj(x)

where Q represents the query text, Aj a particular author, and the sum is over the union
of the features from both texts. The author with the smallest statistic is attributed the
text. The problem of having zero values in the denominator is solved by Grieve [7] through
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a simple feature selection rule: only features that appear in at least n of the documents
for all authors are considered.

Kullback-Leibler(KL) Divergence . The KL divergence is a dissimilarity measure for prob-
ability distributions defined as:

DKL(Q,Aj) = −
∑
x

q(x)logaj(x) +
∑
x

q(x)logq(x) = H(P,Q)−H(P )

where H(P,Q) is the cross-entropy of P and Q and H(P ) entropy. Classification by KL
divergence normally takes into account only one side of the divergence: DKL(joint,D)

where joint represents the probability distribution from an author’s corpus and D that of
the disputed text. This is because the complementary divergence normally has a larger
variance due to the comparatively small size of disputed texts. The text is attributed to
the author with the smallest divergence. Note that the entropy term is the same for all
comparisons, as it only depends on the disputed text. Hence, the minimum KL divergence
decision rule is equivalent to the minimum cross-entropy decision rule. As explained in
depth in chapter 3, this is analogous to classification by compression size when using the
KRIMP classifier.

The comparison of feature vectors based on the KL divergence has been tested in authorship
search in large document collections with more than 100 authors [42], delivering very
reasonable accuracies. This KL-divergence-based algorithm is similar to algorithm 2, but
makes use of Dirichlet smoothing using a background model. Note that applying this kind
of smoothing to a KRIMP-based algorithm is hardly practical.

Being a special case of the KRIMP classifier, using the KL divergence will allow for a more
straightforward interpretation of the results, regarding the effect on accuracy of taking
structure into account. For the purpose of comparing both approaches on equal ground, a
Laplace correction is applied in this work, just as it is applied to the KRIMP code table.

4.2.2.2 Classification algorithms

Some of the most common algorithms proposed in the literature are:

Naive Bayes is a common algorithm in text classification due to the acceptable results it
delivers for its simplicity. Note, however, that a Naive Bayes classifier is exactly equivalent
to the KL divergence or cross-entropy classifier presented before, under a uniform prior. In
Naive Bayes classification, one wishes to classify a document (represented by the associated
probability distribution) to the author with the highest posterior probability given the
document:
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p(Aj |Q) =
p(Aj)p(Q|Aj)

p(Q)

Assuming a uniform prior and setting p(Q) = 1:

p(Aj |Q) ∝ p(Q|Aj)

Given the Naive Bayes conditional independence assumption:

p(Aj |Q) = C
n∏
i=1

p(wi|Aj)

where the product is over all the words in Q and C is some constant. Since the logarithm
is a monotonically increasing function, assigning to the largest p(Aj |Q) is equivalent to
assigning to the largest logp(Aj |Q):

logp(Aj |Q) =

n∑
i=1

log p(wi|Aj) + log(C)

Since C is a constant only the first term is relevant in classification. By summing over the
set of features in Q (rather than the words), and diving by the number of words in the
document (also a constant given D), the first term corresponds exactly to the cross-entropy
H(Q,Aj).

logp(Aj |Q) = −
∑
x

q(x)logaj(x) + log(C) = H(Q,Aj) + C

Maximizing the probability under the Naive Bayes assumption is exactly equivalent to
minimizing the KL divergence, and both classifiers are equivalent.

Support Vector Machines have been proposed Diederich et al. [5] as a method that does not
require feature selection, due to their ability to handle large feature sets with relatively low
training times. SVMS were used by the authors to detect the author of a text, identifying
documents from a given author from a set composed mainly of documents by other authors.
The algorithm performed with nearly perfect accuracy and varying recall both on the
word representation of the complete text, and a derived feature set combining word length
counts, tagged words and bigrams of tagged words. The algorithm, however, was not
tested against more simple approaches like Naive Bayes.

Neural Networks were tested by J. Tweedie et al. [13] for stylometric analysis of the Federalist
Papers, with results consisted with previous work on this dataset. Neural Networks are
attractive due to their ability to generalize and fault tolerance. The authors used a
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predefined set of only 11 English function words for the study: any, from, an, may, upon,
can, his, do, there, on, every. These words are part of a set proposed by Mosteller and
Wallace [27]-authors of the historical paper that settled the case of the Federalist Papers-as
being relevant for this particular problem. A neural network with a single hidden layer
was trained on the word counts. Results were not compared with more simple techniques.

4.2.2.3 Compression algorithms

Applying compression to authorship attribution seems a reasonable and straightforward idea.
Should a compressor’s dictionary or code table computed from the works of author A be
able to compress documents written by author A better than documents from other authors?
The KRIMP algorithm is in fact not the first compression algorithm to be applied to the
task. In general, compression-based approaches compress the author corpora using a particular
compression algorithm that builds a model or dictionary from the text. The disputed text is then
compressed by each of the models and classified to the one yielding the best compression ratio.
From an information-theoretic perspective, the compression rate can be seen as an approximation
of the cross-entropy between the documents. In contrast to most other attribution methods,
compression methods are normally character based.

Nagaprasad et al. [28] and Oliveira et al. [29] test different combinations of compression dis-
tance measures and compression algorithms. These are measures defined for general compressors.
Some of the most common in the literature are:

Normalized Compression Distance [39]

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))

where C(xy) denotes the compressed size of the concatenation of x and y, and lower values
indicate higher similarity.

Compression-based Dissimilarity Measure [17]

CDM(x, y) =
C(xy)

C(x) + C(y)

where C(xy) denotes the compressed size of the concatenation of x and y, and the CDM
is close to one if x and y are not related and lower otherwise.

Conditional Complexity of Compression [29]

CCC(y|x) = |Sc| − |Xc|

where |Sc| is the compressed size of xy in that order and |Xc| the compressed size of x.
This quantity measures how the compressor adapts to y after compressing x and is an
approximation to conditional Kolmogorov complexity.
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Well known compression algorithms are used: ZIP, BZIP, GZIP, LWZ, PPM and PPMd.
These algorithms are very diverse in the way they build dictionaries or models of the data. LWZ,
for example, builds the dictionary in place, considering the input document as a single string,
while BZIP compresses data in fixed size blocks. They are also applied at the character level.
The word level and other transformations of the input are not considered directly, although
compressors might very well pick words in their dictionary. In none of the papers, however,
results achieved by the compressors are directly compared against simpler distance measures
or classifiers like Naive Bayes. Oliveira et al. [29] do compare against an SVM approach on
the same dataset, with an advantage for the compressors. They conclude that the performance
of compression distances are highly dependent on the attribution method: profile-based or
instance-based. In the profile-based approach documents by an author are aggregated into an
author’s corpus, and disputed texts are assigned to the author with the greatest similarity. In
the instance-based approach the disputed document is compared with each document in the
trainings set, and dissimilarities are aggregated by using a rule such as, for example, voting.

Khmelev and Teahan [21] present the R-measure, a repetition-based measure consisting of "a
normalized sum of lengths of all substrings of the document that are repeated in other documents
of the collection". An approximation of the R-measure is calculated efficiently using the suffix
array data structure. Although not precisely a compression approach, the experiments benchmark
the R-measure against several compressors in an authorship attribution task. Although it delivers
competitive results, superior to SVMs (in a one-vs-rest approach), the RAR compressor was
found to be the best-performing algorithm, outperforming other compressors like BZIP2 and
GZIP by a large margin, and SVMs by a smaller margin. Experiment were run on a corpus of
news data with 50 authors. This is consistent with results by V. Kukushkina et al. [36], where
the RAR and specially RARW algorithms delivered the best accuracy among 14 other general
compression algorithms. In this case the algorithms were applied to a corpus from 82 Russian
writers. The RAR algorithm has also been shown to be the one delivering the best results for
general text categorization [25].

4.3 The Algorithm

Algorithm 2, used for the authorship attribution problem is virtually identical to the KRIMP
classifier proposed by van Leeuwen et al. [37]. The process consists in compressing every one
of the classes (author corpora) to obtain a code table per corpus. Disputed texts are then
compressed with every one of the code tables. The lower the compressed size, the greater the
likelihood of the author corresponding to the code table being also the author of the disputed
text. The ranked list of compressed sizes is returned as result.

As explained in section 3.4.1, cross-compression sizes can be regarded as generalizing the
concept of cross-entropy. The compression term, analogous to entropy, is not calculated as it is
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constant for a given disputed text (ie. it depends only on the database). Note that running the
KRIMP classifier with no candidate itemsets (a code table with only the alphabet) results in
the Kullback-Leibler divergence classifier, which is in turn equivalent to a Naive Bayes classifier.

Classifying based on the compressed size of the author corpora using the code table from
the disputed text is also a valid way to classify the database. This is however disregarded as the
variance of this value tends to be much larger, due to generating a code table from a normally
much smaller database.

Data: A set of N author databases {A1,A2, ...,AN} and a disputed text database D
Result: List of dissimilarities {d1, d2, ..., dN}, where the lowest score indicates the most

likely author.
for i← 1 to N do

compress author corpus: CTi = KRIMP (Ai)∀i ∈ 1, 2, ..., N ;
encode disputed text with CTi: di = CTi(D);

end
Algorithm 2: The KRIMP database classification algorithm used for Authorship Attribution
algorithm. It assigns a text to its most likely author, according to its one-way cross-compression
size.

4.4 Attributing prose: Victorian authors

The objective of a first experiment was to determine whether there is useful structure in prose
that can be exploited by the KRIMP algorithm for the attribution task. It was decided to use
data which is freely available to test the algorithm’s performance. However, data for authorship
attribution studies has to meet certain requirements in order to provide useful results:

• The corpus must be large enough and contain enough authors to be challenging.

• Every document must be attributable to a single author. Documents which have multiple
authors or are heavily edited, like Wikipedia pages, are not suitable.

• The type of the works must be uniform. It makes little sense to compare poems to novels.

• All documents must ideally be written around the same time. Books written in different
periods can certainly be compared but there may be big biases due to how languages
evolve over time, and these are not representative of most real attribution problems.

• Ideally all documents must treat the same topic, in order to avoid biases due to topic-
specific vocabulary.

Given that it was not possible to find standard datasets for the problem which are freely
accessible and meet these requirements, it was decided to use books part of the Gutenberg
Project, as done by Ke Selj et al. [16]. A corpus of 289 novels and short stories from 19 authors
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from the Victorian period was harvested from the Gutenberg dataset [22]. Books where chosen
spanning the complete extent of the authors’ careers.

Since the KRIMP algorithm has no parameters that must be tuned, a test set is not always
a requirement. However, given that manual tests had to be performed regarding the best
preprocessing steps, the data was partitioned, separating a small set with less authors for these
experiments. Given that the number of books per author was highly dissimilar, some additional
books were removed randomly from authors having more than 12 books in the corpus. Two
authors were removed due to their corpus being too small. The details of the resulting test with
156 books from 17 authors are shown on table 4.1.

Table 4.1. Characteristics of the text corpus used for the Victorian novelist attribution
experiment. Paragraph and sentence counts include paragraphs/sentences within
quotes. Token counts include only words and punctuation characters not within
quotes.

Author Books Paragraphs Sentences Tokens

Benjamin Disraeli 12 24980 79961 1097775
Bram Stoker 4 5150 22538 294020
Charles Dickens 12 44438 115750 1606135
Charles Kingsley 8 19121 52953 801464
Charlotte Bronte 4 13819 38085 521092
Charlotte Mary Yonge 12 27073 66970 1008466
George Bernard Shaw 4 7085 21470 152705
George Eliot 8 12987 43649 854121
Henry James 12 22653 70234 824482
Henry Rider Haggard 12 19269 54284 822761
Herbert George Wells 12 18503 62581 764728
Joseph Conrad 12 15843 75446 834425
Lewis Carroll 4 2367 5973 73034
Robert Louis Stevenson 12 14591 44809 657645
Rudyard Kipling 12 13677 46282 500121
Sir Arthur Conan Doyle 12 16290 53126 606940
William Makepeace Thackeray 4 5736 25123 465791

4.4.1 Preprocessing and data representations

In preprocessing, the complete set of books was first preprocessed as follows:

• Titles were removed, as these do not constitute sentences, which are tested later on to
define itemsets.

• Glossaries, indexes, prefaces, appendices, citations, bibliography, and non-prose blocks of
text were removed. The beginning and ending of every book was manually checked for
these sections.
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• Quote and dash use was normalized, as there are differences among the original books in
the dataset in the use of single and double quotes and the em-dash.

• Text between quotes was removed, as it does not in most cases reflect the regular writing
style of the author. The quote character was left, as the use of quotes is considered part
of the writing style of the author.

After this step the documents consist of prose text, preserving paragraphs and sentence
division. The Stanford CoreNLP natural language software [24] was used to accurately identify
sentence boundaries, as not every period constitutes a sentence boundary. No lemmatization or
tagging was done at this stage.

One important question is of course how to form itemsets from prose text. It was decided
that division in sentences would constitute a good initial hypothesis. However, preliminary
compression tests showed that the itemsets generated from sentences are too long to be able to
compress at a reasonably low minimum support when allowing duplicate tokens, that is, when
successive appearances of a token are encoded as different itemsets. This was true specially
for the n-gram representation, but also for the word representation, even when allowing only
function words, since many of these tend to appear several times per sentence. The KRIMP
algorithm was however able to mine at a reasonable support when ignoring multiple appearances
of a token in the same sentence (ie. only keeping one item).

Sentence separation is feasible but has two extreme characteristics: a very large alphabet
and very long itemsets. Some sentences in the text are more than 200 tokens long, and the
complete alphabet consisted of more than 40000 words. To test the performance of KRIMP
under radically different circumstances, that would at the same time allow to mine at lower
minimum supports, it was decided to perform a second experiment, reducing both the size
of alphabet and the length of the itemsets by partitioning sentences into multiple itemsets
based on punctuation. The further details and preprocessing steps particular to each of the two
experiments are explained in the next sections.

4.4.2 Looking for structure in sentences

In this first experiment, one itemset is created for each sentence, containing all the words and
punctuation in the sentence. If a word appears multiple times in one sentence only one item
was kept. Only personal pronouns were removed, since, it was reasoned, the relatively small
number of books from some authors can cause biases due to the choices of voice or narrator
(eg. first person vs. third person). All proper nouns were replaced by a single token to avoid
biases by choice of specific names. In this way the use of proper nouns as a stylistic choice is
not lost. Numerals were replaced in the same way. Large author corpora were sampled down to
a maximum of 20000 lines in an attempt to avoid extreme differences in the size of the corpora.
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4.4.2.1 Results

Tables 4.2 and 4.3 contain the results of the sentence compression experiment. KRIMP performs
slightly worse than the KL divergence algorithm, and no clear trend can be established when
varying the database size. The confusion matrix indicates small differences in the algorithms’
decisions. Two of the authors do not have assignments. The particularity of these authors
is that they had small corpora. Even though the largest corpora were being sampled down
to a maximum of 20000 lines, the differences, probably combined with particularities in the
distribution of the authors, produced this effect. The large alphabet and the use of Laplace
smoothing could have contributed to the situation.

Table 4.2. Results of the experiment of sentence compression on the Victorian dataset.
Results show slightly worse performance from KRIMP on the authorship task.
The minimum frequent itemset mining support for this experiment was set at
θ = 0.0025.

Itemsets Documents Items/doc KLD KRIMP

2000 171 34655 0.9591 0.9298
1750 208 30558 0.9567 0.9471
1500 255 26182 0.9647 0.9451
1250 323 21816 0.9659 0.9474
1000 417 17344 0.9496 0.9353
750 585 13025 0.9487 0.9402
500 917 8658 0.9433 0.9378
250 1908 4324 0.9340 0.9245

Table 4.3. Confusion matrix for the sentence compression experiment on the Victorian
dataset, for sub-documents of 250 sentences. Shown are classifications by the
KRIMP (left) and KLD / Naive Bayes algorithm (right).

BD BS CD CK CB CMY GB GE HJ HRH HGW JC LC RLS RK SACD WMT

BD 177|177 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1
BS 0|0 29|27 3|4 2|2 0|0 1|1 0|0 2|4 0|0 10|12 0|0 0|0 0|0 0|0 2|2 5|2 0|0
CD 0|0 0|0 246|248 0|0 0|0 1|0 0|0 0|0 0|0 1|2 0|0 0|0 0|0 1|1 0|0 1|1 3|1
CK 0|0 0|0 0|0 102|102 0|0 0|0 0|0 1|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
CB 0|0 0|0 0|0 0|0 76|78 0|0 0|0 2|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|1

CMY 0|0 0|0 0|0 0|0 0|0 130|130 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
GB 0|0 0|0 18|16 0|0 0|0 7|9 0|0 4|3 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
GE 0|0 0|0 0|0 0|0 0|0 0|0 0|0 108|108 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
HJ 0|0 0|0 0|0 0|0 0|0 0|2 0|0 0|0 137|135 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0

HRH 0|0 0|0 0|0 0|0 0|0 0|0 0|0 2|2 0|0 123|123 0|0 0|0 0|0 0|0 0|0 0|0 0|0
HGW 0|0 0|0 2|0 1|0 0|0 0|0 0|0 1|1 0|0 2|1 143|148 1|2 0|0 1|0 1|0 1|1 0|0

JC 0|0 0|0 0|0 0|0 0|0 0|0 0|0 2|3 0|0 0|0 0|0 163|162 0|0 0|0 0|0 0|0 0|0
LC 0|0 0|0 10|11 1|0 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|2

RLS 0|0 0|0 2|3 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 107|107 0|0 0|0 0|0
RK 0|0 0|0 0|1 3|2 0|0 0|0 0|0 1|1 0|0 1|1 0|0 0|0 0|0 0|0 94|91 1|0 2|6

SACD 0|0 0|0 2|3 0|0 0|0 1|0 0|0 0|1 0|0 1|0 0|0 0|0 0|0 1|0 0|0 99|101 2|1
WMT 0|0 0|0 13|6 2|0 0|0 8|12 0|0 8|0 0|0 0|0 0|0 0|0 0|0 0|0 2|0 0|0 30|45

An important advantage of using compression is that the compression ratio can be used as
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an indication of how much structure is being captured by KRIMP, which is a good indication of
the degree of structure in the database. The average compression ratio for the author databases
during the 10 folds of the experiment was 0.867±0.017. This is a high but not insignificant ratio.
It is higher than the ratios observed when compressing itemset databases used for research,
as reported in [40], but it must be kept in mind that a minimum support of 0.0025 is a high,
though also necessary one.

One of the advantages of the KRIMP algorithm is its interpretability, since the model
generated is a succinct code table, with normally only hundreds or a few thousand itemsets,
besides the alphabet. Looking at code tables can help acquire an idea of the kind of structure
that KRIMP is compressing in the code table. Table 4.4 shows the top 15 itemsets by area and
by usage count in the code table of one of the authors during one fold of the experiment. Note
however that the information that is compressed the best is not necessarily the most important
for classification. In this case it can be seen that segments containing function words and proper
nouns are being compressed well. These are most likely descriptions of dialogs, which are very
common in general in the dataset and have a significant amount of repetition. As expected
many singletons appear among the top 15 itemsets by usage. No dependency between these
singletons is strong enough to appear before them in the code table. However, many common
combinations of function words appeared deeper in the code table.

Table 4.4. Top 15 itemsets ordered by area (left) and usage count (right) of a code
table for author George Bernard Shaw during the sentence compression runs.
Percentages are with respect to the total area and the sum of code table itemset
usage counts respectively. PPN is the substitution token for proper nouns.

Area-ordered
, NNP “ said 1.73%
NNP “ said 1.38%
, “ said 0.68%
, NNP the and to a of in 0.50%
, NNP the and to a of with 0.44%
, NNP the and to a of in was that 0.44%
, NNP the and to a of 0.43%
“ said 0.38%
, NNP the and a of in 0.36%
in 0.34%
, NNP the “ said 0.33%
was 0.33%
, NNP the and to of 0.32%
, NNP the and to of in 0.31%

Usage-ordered
NNP “ said 0.65%
, NNP “ said 0.61%
in 0.47%
was 0.47%
for 0.41%
NNP 0.40%
as 0.37%
with 0.37%
by 0.33%
, “ said 0.32%
at 0.32%
a 0.31%
the 0.31%
that 0.30%
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4.4.3 Compressing word relations

The next experiment on the Victorian authors dataset made use of function word items only.
Furthermore, sentences were divided at punctuation characters in order to get shorter itemsets.
Itemsets consisted then on the function words between two punctuation characters. It was
hypothesized that these short sentence fragments could contain enough differentiating structure
for KRIMP to leverage into improved results. Function words were identified by part of speech
using the POS tagger [24], rather than using a list or a reference distribution. All pronouns,
nouns, verbs, adjectives and adverbs were removed, as were punctuation, symbols and numerals.

4.4.3.1 Data representation

The documents, after being preprocessed as explained in section 4.4.1, were split at the punc-
tuation characters: ",",";",":",".","—","?","!". Any resulting itemsets of length 2 or shorter
were removed from the database. Note that the delimiting punctuation characters themselves
were not included in the itemsets, nor any differentiation is made in this regard. Large author
corpora were sampled down to a maximum of 20000 lines.

4.4.3.2 Results

Table 4.5 shows the results for several document lengths (after all pre-processing). These appear
to indicate that KRIMP does not perform any better than the KL divergence when using this
technique. The KL divergence delivers surprising results for such a simple measure. KRIMP
was specially sensitive to the smallest document sizes.

Table 4.5. Results for the attribution experiment in sub-documents of different lengths
extracted from books written by Victorian authors. Itemsets were created by
splitting at punctuation characters. Itemsets were mined for a relative support of
θ = 0.0001.

Itemsets Documents Items/doc KLD KRIMP

2000 208 10369.28 0.7483 0.7587
1750 246 9147.45 0.7343 0.7238
1500 299 7792.09 0.7413 0.7378
1250 373 6584.52 0.7552 0.7413
1000 490 5201.51 0.7343 0.7343
750 679 3893.91 0.7343 0.7063
500 1056 2535.79 0.6573 0.6224
250 2187 1315.82 0.6049 0.4895

Table 4.6 presents the confusion matrix for the experiment with databases of length 1000,
for both KRIMP and the KL divergence. The results indicate that using KRIMP causes the
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classifier to completely mis-classify documents from some of the authors. Taking itemsets into
account reduced the discrimination power of the classifier.

Table 4.6. Confusion matrix for the Victorian authors attribution experiment using
function words and itemsets defined at punctuation characters, for sub-documents
of length 1000. Shown are classifications by the KRIMP (left) and KL divergence
algorithm (right).

BD BS CD CK CB CMY GB GE HJ HRH HGW JC LC RLS RK SACD WMT

BD 58|55 0|0 0|0 0|0 0|1 1|1 0|2 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|1
BS 1|1 7|16 0|0 0|0 1|0 0|0 0|0 1|1 0|0 3|0 0|0 0|0 0|0 1|0 0|0 4|0 0|0
CD 10|15 1|1 54|40 1|6 14|19 2|3 0|1 0|2 0|0 3|0 6|1 0|0 0|0 2|1 0|0 0|1 0|3
CK 0|0 0|0 0|0 42|39 0|0 1|2 0|0 0|2 0|0 4|2 0|0 0|0 0|0 0|0 0|0 0|2 0|0
CB 1|0 0|0 1|1 0|0 16|21 3|1 0|0 3|6 0|0 0|0 0|0 0|0 0|0 5|1 0|0 0|0 1|0

CMY 4|5 0|3 2|0 0|1 0|3 42|40 0|0 0|0 0|0 4|0 0|0 0|0 0|0 2|1 0|0 0|0 0|1
GB 0|0 0|0 1|0 0|0 0|0 4|0 0|6 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
GE 5|2 0|1 0|1 0|0 0|0 0|1 0|0 41|41 0|0 2|1 0|0 0|0 0|0 1|0 0|0 0|0 0|2
HJ 2|0 1|4 0|0 0|0 1|1 2|3 0|0 1|1 29|30 0|0 0|0 0|0 0|0 2|0 0|0 1|0 0|0

HRH 2|6 0|1 0|0 0|2 0|0 3|4 0|0 0|0 0|0 40|31 0|0 0|0 0|0 0|1 0|0 1|1 0|0
HGW 0|1 0|1 0|0 0|0 0|1 1|0 0|5 0|0 3|0 4|1 27|25 0|0 0|0 2|4 0|0 1|0 0|0

JC 0|0 0|0 0|0 0|1 0|3 0|0 0|0 0|1 1|1 0|0 3|0 36|32 0|0 2|3 0|1 1|1 0|0
LC 0|0 0|0 0|0 1|1 0|0 2|0 0|0 0|0 0|0 0|0 0|0 0|0 0|2 0|0 0|0 0|0 0|0

RLS 2|3 0|0 2|1 2|2 0|4 1|0 0|0 0|1 0|0 0|0 3|3 0|0 0|0 25|20 0|2 1|0 0|0
RK 0|0 0|0 0|0 3|3 0|0 0|0 0|0 0|0 0|0 1|0 2|0 0|0 0|0 1|1 14|19 2|0 0|0

SACD 0|2 0|1 1|0 0|2 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|1 31|27 0|0
WMT 8|1 0|0 4|0 2|0 0|0 2|0 0|0 5|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 5|25

The compression ratio of the author corpora for this experiment was 0.84±0.02, only slightly
lower than that of the previous experiment. This indicates that slightly more structure is indeed
being used in the classification process. However, this is again higher than compression ratios
reported in [41] for classification databases. In other words, there is only little compressible
structure when splitting sentences and reducing the alphabet to function words. It is an
indication that the amount of structure present at the word level, even in heavily preprocessed
text containing only function words, is relatively low. Table 4.7 shows the top 15 code table
itemsets by area and by usage.

4.4.4 The effect of smoothing

Given the significantly better results when using complete alphabets, in this section the compar-
ison is taken further by analyzing a different way of applying smoothing. An interesting finding
was that applying the Laplace correction or smoothing in a different way yielded the best results
observed for this experiment. In this experiment, instead of defining a global alphabet that is
used for all databases and applying correction to this alphabet (or the full code table in the case
of KRIMP), the alphabets of the individual author databases are considered separately. The
alphabet is completed by inserting only the elements needed to compress the disputed text and
then applying a Laplace correction. In other words, the correction is a applied on a case-by-case
basis.
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Table 4.7. [Top 15 itemsets ordered by area (left) and usage count (right) of a code
table for author George Bernard Shaw during the function word experiment runs.
The number to the left of the bar indicates the occurrence. For example, "0|on"
represents the first occurrence of "on" in the itemset; "1|on" the second one; and
so on. Percentages are with respect to the total area and the sum of code table
itemset usage counts respectively.

Area-ordered
0|on 1.30%
0|by 1.24%
0|as 1.22%
1|a 1.18%
0|the 0|of 0|and 1.18%
1|of 1.18%
0|an 1.16%
0|the 0|of 0|to 0|for 1.12%
0|at 1.10%
0|the 0|to 0|for 1.07%
0|which 1.04%
0|with 1.02%
0|the 0|and 0.98%
0|from 0.98%

Usage-ordered
0|on 2.08%
0|by 1.99%
0|as 1.95%
1|a 1.89%
1|of 1.88%
0|an 1.86%
0|at 1.75%
0|which 1.66%
0|with 1.62%
0|from 1.56%
1|the 1.51%
0|who 1.38%
1|and 1.32%
0|but 1.31%

Although this approach is not the one used normally for Naive Bayes classifiers, it is arguably
valid from the viewpoint of information theory. If the alphabet is considered to be unknown, this
constitutes a less biased measure of cross-entropy, as elements not appearing in any of the two
databases do not increase the code sizes for the rest (ie. the correction is less dramatic, specially
when the global alphabet is large). General compression algorithms are generally applied on a
case by case basis in the literature, without correcting for a global alphabet [25]. This is not
necessary for some of them because the models used by compression algorithms are generally
built while the algorithm runs, and can be simply completed when new symbols appear. KRIMP
has a clearly defined training phase, after which its model is final.

Applying the algorithm in this way does not come without its problems. Concisely, the
opposite effect may appear: the alphabet of small author corpora containing general terms and
few uncommon vocabulary will be completed with few new terms, and is thus likely to compress
databases from other authors very well. Table 4.8 shows the results obtained when compressing
in this way. These were globally the best results obtained for the Victorian dataset. The results
revealed that most mis-classifications by the KL divergence algorithm were to the author with
the smallest corpus. Books from this author also happened to contain an above-average amount
of dialog, and sections with significant dialog from other books were thus mis-classified. KRIMP
was less susceptible to this because, as shown by the analysis of the code tables, sentences
containing dialog are in general compressed very well. This is due to the repetition of phrases
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and punctuation that introduce dialog, and the common use of quotes.

Table 4.8. Results of the sentence compression experiment on the Victorian dataset
when alphabets are completed on a case by case basis. Results show better
performance from KRIMP on the authorship task. The minimum frequent itemset
mining support for this experiment was set at θ = 0.0025.

Itemsets Documents Items/doc KLD KRIMP

2000 171 34655 0.9649 0.9942
1750 208 30558 0.9375 0.9952
1500 255 26182 0.9255 0.9961
1250 323 21816 0.9195 0.9969
1000 417 17344 0.8968 0.9928
750 585 13025 0.8598 0.9915
500 917 8658 0.8037 0.9858
250 1908 4324 0.7264 0.9738

4.4.5 Using less data

A final experiment was performed making use of less training data. The objective was both to
determine the performance of KRIMP with significantly less information, and to perform an
experiment where the sizes of the author corpora were completely balanced, to eliminate the
adverse effect of smoothing on the Naive Bayes classifier seen in the last experiment. To do it
each author’s corpus was limited to 2500 lines, sampled without replacement from their original
corpus. For the 4 folds of the experiment every original corpus contained more than 2500 lines,
meaning that every sampled corpus had exactly 2500 lines. The Laplace correction was applied
case-by-case, as in the previous experiment.

Table 4.9. Results of the sentence compression experiment on the Victorian dataset
when author corpora are sampled to 2500 lines. Results show better performance
from KRIMP, confirming that KRIMP indeed provides an advantage. The mini-
mum frequent itemset mining support for this experiment was set at θ = 0.0025.

itemsets Chunks Items KLD KRIMP

2000 171 34655 0.9766 0.9883
1750 208 30558 0.9663 0.9856
1500 255 26182 0.9725 0.9843
1250 323 21816 0.9655 0.9876
1000 417 17344 0.9664 0.9832
750 585 13025 0.9504 0.9761
500 917 8658 0.9258 0.9727
250 1908 4324 0.8732 0.9418
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Table 4.9 shows the results. From it is clear that KRIMP is superior in accuracy when
considering the complete alphabet. Naive Bayes does improves with less data, confirming that
the use of Laplace smoothing was indeed affecting its results. However, KRIMP still performs
about 7% better for the smallest documents. The reduction in the performance for KRIMP is
relatively minor with respect to the previous experiment with more data.

The previous results are an indication that KRIMP is capturing relevant structure information.
One explanation as to why KRIMP is an improvement comes from the analysis of code tables
in the light of the writeprint hypothesis [23], which states that lexical and syntactic features
(among others not so prominent in this particular dataset) are of utmost importance in capturing
a personal style of writing. This idea is not new but stems from years of research in the field.

Syntactic features are mainly function words and punctuation, and it is these features
that KRIMP joins into code table elements. In other words, KRIMP compresses our preferred
structural choices when putting together sentences. What the results indicate is that the
combination of these choices at the sentence level are more telling than assuming independence.

Lexical features, understood as more uncommon words that characterize the breadth of an
author’s vocabulary, are less likely to form itemsets, due to their sparseness, and hold power in
isolation. KRIMP code tables can then be regarded as a combination of high-level syntactic
features in the form of itemsets that capture common choices of the author in structuring
sentence or sentence fragments, and individual lexical features. Their weights (code sizes) are
balanced in a way that is governed by the MDL principle.

Table 4.10 shows the corresponding confusion matrix for document lengths of 250. Many
mis-classifications by the KLD algorithm are to the corpus of Lewis Carroll, the one containing
the greatest amount of dialogue. The algorithm is susceptible even when the size of the training
sets are balanced. KRIMP incurs less frequently in this type of error, due to its ability to
combine items into itemsets more characteristic of author style.

Table 4.11 shows a review of all the experiments performed for a document length of 250 and
the complete alphabet. In previous experiments, the same features / items were input to both
algorithms. To test whether counting only first occurrences of items in sentences was affecting
the accuracy of Naive Bayes, the standard approach of counting every item was tested as well
(indicated by KLD*). Interestingly, both accuracies are practically the same.

4.5 Attributing songs

The second experiment was run on data with, a priori, much more structure: songs. The objective
was to test whether there exists significant structure in the author’s choice of function words,
or in the n-gram representation of the song, that KRIMP can utilize to improve attribution
accuracy.
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Table 4.10. Confusion matrix for the Victorian authors attribution experiment with
one itemset per sentence and corpora of length 2500, for sub-documents of length
250. Shown are classifications by the KRIMP (left) and KL divergence algorithm
(right).

BD BS CD CK CB CMY GB GE HJ HRH HGW JC LC RLS RK SACDWMT

BD172|173 2|1 1|0 0|0 0|0 0|0 1|2 0|0 0|0 0|0 0|0 0|0 0|0 1|2 0|0 0|0 1|0
BS 0|0 52|52 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|1 0|0 1|1
CD 0|0 2|3 216|204 0|0 0|0 1|1 0|5 3|0 7|10 6|5 0|0 0|0 0|20 10|3 1|0 1|1 6|1
CK 0|0 1|4 0|0 100|84 0|0 0|0 0|0 0|0 0|0 0|4 0|0 1|1 0|4 0|0 0|4 1|2 0|0
CB 0|0 3|4 0|1 0|0 73|64 0|0 0|0 2|1 0|7 0|0 0|0 1|0 0|0 0|1 0|0 0|0 0|1

CMY 0|0 0|1 0|0 0|0 0|0 130|124 0|1 0|0 0|0 0|1 0|0 0|0 0|1 0|2 0|0 0|0 0|0
GB 0|0 0|0 0|0 0|0 0|0 0|0 28|29 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
GE 0|0 2|8 0|0 0|0 0|0 1|0 0|0 105|91 0|7 0|0 0|0 0|0 0|1 0|0 0|1 0|0 0|0
HJ 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|0 137|134 0|0 0|0 0|0 0|2 0|0 0|0 0|0 0|0

HRH 0|0 3|4 0|0 0|0 0|0 0|0 0|0 0|0 0|0 122|121 0|0 0|0 0|0 0|0 0|0 0|0 0|0
HGW 0|0 6|14 0|0 0|0 0|0 0|0 1|4 0|0 2|10 0|1 132|100 3|2 3|19 0|0 3|0 3|3 0|0

JC 0|0 1|5 0|0 0|0 0|0 0|0 0|0 0|0 0|13 0|0 0|0 162|143 0|1 0|0 2|3 0|0 0|0
LC 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 11|11 0|0 2|2 0|0 0|0

RLS 0|0 0|0 0|0 0|0 0|0 0|0 0|3 0|0 0|0 0|0 0|0 0|0 0|2 110|105 0|0 0|0 0|0
RK 0|0 2|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 3|17 0|0 90|82 0|0 7|1

SACD 0|0 6|9 0|2 0|0 0|0 0|0 0|1 0|0 1|0 1|1 0|0 0|0 0|1 0|0 2|4 95|88 1|0
WMT 0|0 0|0 0|2 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 62|61

Table 4.11. Summary of experiments on the Victorian authors dataset for a document
length of 250. KLD* corresponds to a Naive Bayes classifier trained using the
complete word counts (as normally) rather than counting only the first occurrence
in a sentence.

Algorithm Max corpus length Global alphabet Accuracy

KLD 20000 yes 0.9340
KRIMP 20000 yes 0.9245
KLD 20000 no 0.7285
KRIMP 20000 no 0.9738
KLD* 2500 no 0.8732
KLD 2500 no 0.8721
KRIMP 2500 no 0.9418

4.5.1 The data

The corpus of poems used in this experiment was made publicly available by the authors of the
book Van wie is het Wilhelmus? (Dutch for Who wrote the Wilhelmus? ) [20], which presents the
results of a computational analysis on the authorship of the national anthem of The Netherlands.

The corpus consists of songs from seven different authors, some of which are considered
historical candidates for the authorship of the anthem. The songs were written in the 16th
century—close to the time of the first known appearance of the anthem—in the Geuzenliedboek,
a book compiling songs printed in 1577 or 1578. Most of the songs in the book are unattributed.
The data contains unprocessed transcriptions of the original books in which songs were published.
Some of these songs are also available in lemmatized and POS-tagged form. POS-tags for this
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subset were manually corrected by the book’s authors for mistakes made by the tagger. Statistics
for the original and lemmatized and tagged datasets are given in the following sections.

4.5.2 Looking for differentiating structure in n-gram itemsets.

The first experiment on song data made use of n-grams. This experiment was performed to
determine the ability of KRIMP to capture structure present in the n-gram representation.
Given that the songs have rhyme and a more uniform structure than prose, and also generate
more constant itemset lengths by simply partitioning per verse, the n-gram representation
seemed like a good fit.

Specifically, n-grams forming part of common words are expected to be joined in the KRIMP
code tables, while others with less strong dependencies, possibly expressing more general style
choices of the author in word choice, rhyme and punctuation, would be left alone.

Note however that the n-gram representation would not be used in an actual attribution
study for these works; there are spelling differences among the books from which the authors’
songs were extracted that are of unknown origin. These could have been introduced by editors
rather than by the original song writer. However, for the purpose of determining whether KRIMP
provides an advantage when using the n-gram representation, the differences were considered
acceptable.

For this experiment, it was decided to use 3-grams, as this size has been found to be among
the most effective [7] and it keeps the alphabet size in check. To further reduce itemset size,
3-grams where filtered by removing whole-word, mid-word, and multi-word 3-grams (see section
4.2.1), which where found in Sapkota et al. [32] to decrease accuracy in authorship attribution,
while accounting for a large portion of the total n-grams.

Table 4.12 shows the details of the original and processed n-gram dataset, which totaled 827
songs from 6 authors. The reduction in item count after removing non-word n-grams was 35%
on average.

Table 4.12. Characteristics of the dataset used for the n-gram experiment on the
Dutch songwriter corpus. Values are totals for each author’s corpus. The token
count corresponds to splitting the original text on the space character. The n-gram
count includes all n-grams (approximately one per character) while non-word
n-grams counts only those used for the experiment.

Songs Lines Lines/song Tokens n-grams non-word n-grams

coornhert 108 4859 44.99± 39.19 30563 179396 114508
datheen 155 9071 58.52± 51.04 55443 324424 205961
fruytiers 132 5031 38.11± 19.90 30032 171192 109487
haecht 221 11,057 50.03± 39.87 61206 357122 244998
heere 42 3010 71.67± 147.79 20960 121593 77908

marnix 169 10329 61.12± 51.05 64337 371486 240806
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4.5.2.1 Data Preprocessing and Representation

The data was preprocessed as follows:

• Songs were extracted from the original transcriptions, preserving capitalization and line
breaks but removing accents (to normalize editing differences in accent use).

• A line break character was added at the end of each line of the song. No character was
used to separate stanzas.

• Character 3-grams were extracted per line, by applying a sliding window through the song.
The 3-grams containing the line break character were kept. These characters were added
to better capture the rhyme present in some songs, as well as the choices for starting
verses.

4.5.2.2 Results

The authorship attribution experiment consists in measuring the classification accuracy of the
algorithm on the corpus of text. All songs were concatenated into author corpora. Preliminary
experiments showed that attributing complete songs was not challenging enough, probably in
big part due to spelling and edition differences. The classifier on complete songs had 100%
accuracy. It was then decided to take shorter song segments, using 10-fold cross-validation.
All the songs were first concatenated into author corpora. In one fold of the experiment, the
corresponding 10% of the lines are separated for each author and used as test set, after splitting
them into documents of length l (number of lines). A document might then contain text from
two different songs of the same author.

Table 4.13 shows results of the attribution experiment for different lengths l of the disputed
text. Very high accuracies, even for sections of only 20 lines, indicate that author databases
are highly dissimilar. This is expected given that every author database comes from a different
source, and edition and spelling differences are most certainly playing an important role.

In analyzing the results, it was found that practically all miss-classifications occurred for
sections of the corpus by Filips van Marnix, which contains a good amount of French language,
in contrast with the other authors. Had the corpus been cleansed of these sections, the accuracy
would have been even closer to 100%. It is notable however that the KRIMP is more resilient
to this circumstance. It comes as no surprise that documents containing mainly French are
assigned to him. However, also many documents containing only Dutch language are correctly
assigned to Filips van Marnix, even though his corpus contains a significant amount of French.
The KL divergence tends to assign these documents to other authors.

Given the very high accuracies, nothing can be said regarding an advantage of disadvantage
from the use of KRIMP. Using even smaller database sizes is both unrealistic (virtually all songs
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in the dataset had a size of at least 20) and likely to favor the KL divergence due to the reduced
variance expected from compressing the same small database using more elements.

Table 4.13. Accuracies of the n-gram experiment on the Dutch song corpus, for
different sizes of the disputed documents.

Length (l) Songs KLD KRIMP

20 2380 0.9651 0.9748
30 1584 0.9735 0.9823
40 1184 0.9704 0.9882
50 948 0.9821 0.9873

4.5.3 An authorship attribution experiment

Given that the n-gram representation is not suitable for heavily edited data due to the loss
of information and potential bias, a proper authorship attribution experiment in this scenario
must either manually normalize spelling and edition (if viable) or make use of lemmatization to
extract semantic features like lemma-tag pairs.

Normalizing the spelling is an option when differences stem from mistakes and it is in fact
desirable given that it preserves the most stylistic information. However, the lack of a standard
Dutch language in the 16th century (a common problem in attribution of old documents), made
normalization of this dataset a difficult and questionable choice, as explained by Kestemont
et al. [20]. The data was instead lemmatized and POS-tagged, a process which maps words to
their modern Dutch base form and part of speech.

In Kestemont et al. [20], lemma-tag pairs were manually corrected after being generated
by a memory-based tagger trained on a Middle Dutch dataset. However, not enough data was
available in corrected form for an experiment using KRIMP. Given that many of the tagging
errors where expected to be random and that an inspection of the tagged data revealed that
most of the errors affected uncommon words, it was decided to perform an experiment using
the uncorrected tagged data, which formed a significantly larger corpus. Table 4.14 shows the
author corpora used along with some statistics about each author’s corpus. These values are for
the lemmatized and tagged corpus with no feature selection.

4.5.3.1 Data Preprocessing and Representation

Lemma-tag pairs did not have to be extracted for this experiment as the data was tagged for
the study by Kestemont et al. [20] and made public in this form. The main question pertained
how to select the relevant lemma-tags (alphabet) for the experiment. Some form of frequency
based-selection method seemed to be the best option since the tagger produced mistakes specially
for less frequent lemma-tag pairs.

It was decided to perform two experiments with different alphabet selection procedures:
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Table 4.14. Characteristics of the lemmatized and tagged corpus. Itemset and item
counts are per song. The number of itemsets corresponds with the number of lines in
a song–one itemset was created per line. The number of words corresponds roughly
with the number of words in the original poems after removing punctuation.

Author Songs Itemsets Items

coornhert 14 74.79± 7.55 584.71± 11.52
datheen 35 80.31± 13.63 586.94± 15.61
fruytiers 33 66.24± 24.40 460.36± 156.95
haecht 35 95.43± 26.55 632.43± 136.06
heere 23 68.52± 9.60 571.04± 9.76
marnix 46 78.43± 14.75 577.61± 15.50

Top 300 words . The top 300 tag-lemma pairs from the reference corpus are taken as the
alphabet. These words are mainly function words, but also include some nouns, adjectives
and verbs, which are not always taken as function words.

Top 200 function words . Here the term function word is used loosely. The top 300 lemma-
tag pairs where filtered to remove nouns, adjectives and verbs, before taking the top 200
pairs as alphabet. This was done in an attempt to eliminate biases caused by nouns,
adjectives and verbs linked to the particular theme of the song.

The reference corpus used consisted of the author corpora, along with other songs from time,
from the Geuzenliedboek and other sources.

4.5.3.2 Results

Tables 4.15 and 4.16 show the confusion matrices for both of the experiments. The complete
dataset was used as test set, as there were no model or pre-processing parameterers to adjust.
The 10-fold cross-validated results indicate high accuracies for both classifiers, and higher
accuracies for the feature selection method taking the top 300 words. The KL divergence
algorithm outperforms KRIMP by 2 correct classifications in this first experiment, while in the
second one both classifiers have exactly the same accuracy.

Table 4.17 shows a summary of the accuracies obtained. Despite the short length of the
songs, both algorithms are able to differentiate the authors with high accuracy. Although it
can be said that there is no advantage to using KRIMP, a more expensive algorithm, for this
experiment, it is hard to say anything regarding experiments with more candidates. It is possible
that the aggregation of items into itemsets in the KRIMP code table increases the differentiation
power of the algorithm.
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Table 4.15. Confusion matrix for the 10-fold cross-validated authorship attribution
experiment using as alphabet the top 300 lemma-tag pairs in the reference
distribution. The numbers shown are classifications using KRIMP (left) and KL-
divergence (right). Both algorithms classify in a very similar way. The accuracy
for KRIMP algorithm was 0.935 and for the KL-divergence classifier 0.946. The
KRIMP algorithm was run with a relative minimum support of θ = 0.002.

coornhert datheen fruytiers haecht heere marnix

coornhert 14 | 14 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0
datheen 0 | 0 35 | 34 0 | 0 0 | 1 0 | 0 0 | 0
fruytiers 0 | 0 0 | 0 31 | 31 1 | 2 0 | 0 1 | 0
haecht 0 | 0 8 | 4 2 | 2 25 | 29 0 | 0 0 | 0
heere 0 | 0 0 | 0 0 | 0 0 | 0 23 | 23 0 | 0

marnix 0 | 0 0 | 0 0 | 1 0 | 0 0 | 0 46 | 45

Table 4.16. Confusion matrix for the 10-fold cross-validated authorship attribution
experiment using as alphabet the top 200 lemma-tag pairs corresponding to
function words in the reference distribution. The numbers shown are classifications
using KRIMP (left) and KL-divergence (right). Both algorithms coincide in most
classifications. The accuracy for both algorithms is 0.925. The KRIMP algorithm
was run with a relative minimum support of θ = 0.002.

coornhert datheen fruytiers haecht heere marnix

coornhert 13 | 14 0 | 0 0 | 0 0 | 0 0 | 0 1 | 0
datheen 0 | 0 34 | 34 0 | 0 1 | 1 0 | 0 0 | 0
fruytiers 0 | 0 1 | 1 31 | 30 1 | 1 0 | 1 0 | 0
haecht 0 | 0 5 | 4 3 | 4 26 | 26 1 | 1 0 | 0
heere 1 | 0 0 | 0 0 | 0 0 | 0 22 | 23 0 | 0

marnix 0 | 0 0 | 0 0 | 1 0 | 0 0 | 0 46 | 45

Table 4.17. Accuracies of the two experiments performed on the lemmatized and
tag Dutch songwriter corpus. Accuracies are very high despite the short length of
the songs. Taking all words into account, rather than only function words, gives
better results for both algorithms. Items indicates the average number of items
per song, after pre-processing.

Features Songs Items KLD KRIMP

Top 300 words 186 322.63 ± 59.49 0.9462 0.9355
Top 200 fn words 186 231.08 ± 42.50 0.9247 0.9247
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4.5.4 Attributing the Wilhelmus

The text of the Wilhelmus was attributed using the classifiers by inserting it into the cross-
validation set, in such a way that is was classified 10 times.

For the classifier trained on the 300 most common words, in the ten folds, the Wilhelmus was
attributed to Pietrus Datheen, both by KRIMP and by the KL divergence algorithm, coinciding
with the results by Kestemont et al. [20]. This is no surprise considering that the data used for
the classifier and the preprocessing steps are very similar (even though the songs included are
not exactly the same).

When using the top 200 function words, however, KRIMP and the KL-divergence disagree.
While the KL divergence algorithm attributed the text to Pietrus Datheen in all 10 folds,
KRIMP attributed the text to Willem van Haecht in 8 out of the 10 folds. The fact that there
is a disagreement between these classifiers with very high accuracies, and which agree in the
vast majority of classifications hints that the Wilhelmus may not be very easily identifiable as
creation of a particular author. This is explored further in the next section.

4.5.5 Back to Anomaly Detection

One of the conclusions of the work by [20] was that Pietrus Datheen, a candidate overlooked
lately, was the most probable writer of the Wilhelmus, based on a computational analysis [19],
and historical evidence.

In many attribution studies like the the one on the Wilhelmus it is not known with complete
certainty whether the real author of a text is within the candidate authors. This is the reason
why a different approach to attribution attempts to rather answer the question: how likely
is it that author X is the writer of the disputed text? Insight into how normal a particular
production is in the work of different candidates may also help validate the assumption made
when approaching the attribution problem as a classification problem: the author is within the
candidates. Algorithms answering this question may find that a particular work is anomalous in
all of the author corpora, shedding doubt into the assumption. This is, however, not always the
case as the ability to tell apart a document from those in a corpus certainly depends on the
degree of uniformity in the style of the author and the amount of data available.

In this section, this idea is explored using the insights from chapter 3, aiming to get a
clearer picture of how well the text of the Wilhelmus compares with the writings of the most
likely candidates, in isolation. An anomaly detection experiment was run using the complete
corpus from these candidates. Such an anomaly detection experiment, as opposed to a classifier,
answers a very different question: how normal would the given text be if written by author X?

The experiment was run for the three most probable candidates according to Kestemont
et al. [20]: Pietrus Datheen, Willem van Haecht and Filips van Marnix. The objective is not to
automatically detect anomalies–the small size of the corpus and of the individual songs rendered
this unlikely to work–but to visualize how well the Wilhelmus compresses when placed in an
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(a)

(b)

(c)

Figure 4.1. Histograms of compressed sizes D(Di, joint) (left) and D(joint,Di)
(right), for three authors in the Dutch corpus: (a) Datheen. (b) Haecht. (c)
Marnix.

author’s corpus, in comparison with other songs from the author. This can be interpreted as
visualizing how anomalous the Wilhelmus would be if written by a particular author.

The top 300 words in the reference distribution were used for this experiment, as per the first
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classifier. The KL Divergence was used as distance measure to reduce variance of the compressed
sizes as much as possible, given the very small size of the database. Figure 4.1 plots histograms
for both distributions of compressed sizes. In this case the observed distribution of results is not
close to normal, possibly because of the different structure present in text, the small size of the
databases, the small number of observations or a combination thereof.

Results from figure 4.1 tend to support the idea that Filips van Marnix is not the author of
the Wilhelmus, mainly because its compressed size is the largest among 46 other songs when
compressed using the joint distribution–an indication of anomalous behavior. The distribution
of D(Di, joint) (left) is expected to have a lower variance due to the small size of the individual
databases in comparison with the joint database. Although not the most extreme point, the
song is also among the ones that compress the joint Marnix corpus the worst.

However, van Haecht’s results tend to indicate that the song would not be anomalous within
his corpus, as is also the case with Datheen. Not only is the Wilhelmus not anomalous in these
distributions, but it is also close to average, both when compressing the joint database using
the code table obtained from the Wilhelmus, as the other way around. These results tend to
further indicate that the Wilhelmus is not clearly characteristic of any one of these two authors
when using the preprocessing and feature selection techniques that were used in this study.

4.6 Conclusions

Experiments using KRIMP for authorship attribution lead to the following conclusions:

• KRIMP captures significant punctuation and function word co-occurrences in its code
tables, as indicated by compression ratios and the code tables themselves. Experiments
on the Victorian authors dataset indicate strongly that the structure being captured by
KRIMP is important for attribution of prose text, as indicated by a consistent advantage
over the Naive Bayes classifier. The very similar theoretical grounds of both classifiers
result in a very solid comparison. Naive Bayes performed slightly better when smoothing
was performed on a global dataset alphabet. However, KRIMP outperformed Naive Bayes
consistently when smoothing was applied on a case-by-case basis, with big and with smaller
training sets, and for different document lengths tested. This second approach resulted in
the globally best results for prose data. The improvement in accuracy from using KRIMP
justifies its use in literature over Naive Bayes when running time is not important.

• Code tables reveal that KRIMP is compressing high-level structural choices into itemsets,
capturing, in a sense, preferred ways of structuring sentences, or describing dialogs. These
high-level structural choices tend to be compressed in itemsets, while rare words are not.
Results are compatible with the idea that there is an individual grammar that encodes
important information about authorship.
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• The KRIMP classifier displayed more robustness with respect to differences in the size
and composition of the corpus of different authors. In fact, the best classifier obtained
for the Victorian authors dataset made use of KRIMP with heavily imbalanced author
corpora. This is due to KRIMP’s capacity to combine items which are not particularly
characteristic into itemsets which are much more characteristic of a particular author. The
same effect was made evident in the Dutch songs experiment when an author’s corpus
contained songs in both Dutch and French. KRIMP was able to attribute many Dutch
songs correctly despite the bias in the corpus. The Naive Bayes classifier struggled in both
of these cases.

• Creating one itemset per sentence is a superior approach to splitting sentences at punctu-
ation characters. In fact, looking for structure in the use of function words in sentence
fragments resulted in worse performance than simply applying the Naive Bayes classifier.
One possible reason for this is that the structure imposed by language grammar itself is
too constraining; the freedom left for author choice in putting together sentence fragments,
as opposed to full sentences, is limited.

• The function word profile, very prevalent in the literature, falls short for a corpus of the
size used. For both KRIMP and Naive Bayes, the use of the complete alphabet delivered
clearly superior results.

• When dealing with unseen vocabulary and large alphabets, the way of application of
Laplace smoothing severely impacts accuracy of Naive Bayes, but KRIMP showed to
be more resilient to this choice even with highly dissimilar sizes of the training corpora.
Completing alphabets on a case-by-case basis, as suggested by information-theory-based
approaches, rather than defining a global alphabet resulted in better accuracy when using
KRIMP.

• Ignoring second occurrences of a token within a sentence does not affect the accuracy of
Naive Bayes, and does not severely affect KRIMP either, as indicated by the very high
accuracies obtained. This is necessary when compressing literature using KRIMP in order
to avoid an explosion in the number of frequent patterns.

• Regarding the attribution of the Wilhelmus, the experiments tend to agree with previous
work by Kestemont et al. [20] in attributing the text to Pietrus Datheen in most cases.
However, KRIMP attributed the anthem to Willem van Haecht when a different feature
selection method was used. The anomaly experiments performed on the dataset tend to
indicate that the text would not be anomalous in the corpus of any of these two authors.
The same experiment showed that the anthem would be much more anomalous in the
corpus of Filips van Marnix, the second most likely candidate according to Kestemont
et al. [20].
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4.7 Future work

Some possible areas for future work identified during the development this thesis are:

• Experiments with songs. The use of KRIMP on songs in chapter 4 did not improve the
results for the Dutch songwriter dataset. However, the algorithm remains untested in two
regards:

– Unedited n-gram data. Songs with rhyme seem a natural fit for KRIMP given the
high degree of structure of the data. In the experiments, it achieved a high accuracy
in distinguishing text from different sources. Even when this was not a proper
authorship attribution experiment, the almost perfect accuracy on n-gram data leaves
the question open of whether the algorithm would offer an advantage with n-gram
data from an unedited source.

– Full vocabularies. Both of the experiments on song data made use of a reduced
set of function words. If the results for prose are an indication, using the complete
vocabulary should significantly improve accuracy.

• Comparison with language-model-based approaches, which in general disregard sentence
division but capture local dependencies. Some of these approaches also have a Bayesian
interpretation [30].

• Experiments using KRIMP for text categorization. Even though many of the algorithms
used are the same, this is a fundamentally different problem, mainly because the prepro-
cessing steps are very different, and thus also the data characteristics. While in authorship
attribution function words, punctuation and their combination are important, in text
categorization mainly less common words and in particular their meanings are of im-
portance. This is an advantage for KRIMP because the removal of function words and
punctuation is likely to enable compression at lower minimum supports. It is possible that
the combination of words into itemsets increases the discrimination power of a classifier.

70



A
p

p
e

n
d

ix A
Appendix A

This appendix includes the histograms, normal distribution fits, Q-Q and P-P plots of the
distributions obtained during the class database experiments in chapter 3. The histograms

for the adult database are included in chapter 3, and are then not included here.
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Figure A.1. Distribution of normal D(Di, joint), for the minority class of the mush-
room database, in one run of the experiment of table 3.2.



Figure A.2. Distribution of normal D(joint,Di), for the minority class of the mush-
room database, in one run of the experiment of table 3.2.
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Figure A.3. Distribution of normal D(Di, joint), for the minority class of the nursery
database, in one run of the experiment of table 3.2.
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Figure A.4. Distribution of normal D(joint,Di), for the minority class of the nursery
database, in one run of the experiment of table 3.2.
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Figure A.5. Distribution of normalD(Di, joint), for the minority class of the pendigits
database, in one run of the experiment of table 3.2.
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Figure A.6. Distribution of normalD(joint,Di), for the minority class of the pendigits
database, in one run of the experiment of table 3.2.
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